Department of Mathematics and Statistics, KFUPM Math-580-Comprehensive, Year 2020-2021

MM: 100

Duration: 120 minutes

Q1 (5+5 pts): (a) Let Ω_1 and Ω_2 be convex subsets of \mathbb{R}^n . Prove that $\Omega_1 + \Omega_2$ is a convex set of \mathbb{R}^n .

(b) Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex function and let $\psi : \mathbb{R}^n \to \mathbb{R}$ be non-decreasing and convex on a convex set containing the range of the function f. Show that ψof is convex.

Q2 (12pts): Let $f : \mathbb{R}^n \to \mathbb{R}$ be a differentiable function on a nonempty convex set Ω in \mathbb{R}^n . Prove that the following are equivalent.

(i)
$$f$$
 is convex.

(ii) $f(x) - f(\bar{x}) \ge \nabla f(\bar{x})(x - \bar{x})$ for all $x, \bar{x} \in \Omega$

Q3 (8pts): Show that the following problem is a convex optimization problem

Minimize
$$f(x_1, x_2) = \sqrt{(x_1 - x_4)^2 + (x_2 - x_5)^2 + (x_3 - x_6)^2}$$

subject to $(x_4 - 3)^2 + x_5^2 \leq 1$,
 $4 \leq x_6 \leq 7$.

Q4 (1+4+6 pts): (a) Define a normal cone to a convex set at a point.

(b) Let $\bar{x} \in \Omega$ for a convex subset Ω of \mathbb{R}^n . Then prove that $N(\bar{x}; \Omega)$ is a closed, convex cone containing the origin.

(c) Define domain and epigraph of an extended real-valued function f. Show that $\partial f(\bar{x}) = N((\bar{x}; dom f))$, where $\partial f(\bar{x})$ is the singular subdifferential of f at $\bar{x} \in dom f$.

Q5 (5+5+4 pts): (a) Determine the subdifferential of the convex function

$$f(x) = \begin{cases} -x, & \text{if } x < 0\\ \\ x^2 & \text{if } x \ge 0 \end{cases}$$

at the points -1 and 0.

(b) Use the definition of directional derivative to determine $\partial f(0)$, where

$$f(x_1, x_2) = |x_1| + x_2^2$$

(c) Let $f_1(x) = -x$ and $f_2(x) = x, x \in R$. use the result

$$\partial(maxf_i)(\bar{x}) \supset co\{\cap_{i \in I(\bar{x})}\partial f_i(\bar{x})\}, i = 1, 2, \cdots, m$$

to compute $\partial f(0)$.

\mathbf{Or}

(c) Define Gateaux derivative of an extended real-valued function at the fixed point. If f is a Gateaux differentiable at \bar{x} , then show that $\partial f(\bar{x})$ is a singleton.

Q6 (10pts): Compute the Fenchel conjugate of

$$f(x) = \begin{cases} \frac{x^p}{p}, & \text{if } x \ge 0\\ \infty & \text{if } x < 0, \end{cases}$$

where $x \in R, p \in R, p > 1$.

Q7 (3+7 pts): (a) Define polar cone, dual cone and tangent cone to a convex set at a point.

(b) Let Ω be a non-empty convex set in \mathbb{R}^n . Let $\bar{x} \in \Omega$. Then prove that the normal cone of Ω at \bar{x} is the polar cone of the tangent cone of Ω at \bar{x} (That is $N(\bar{x};\Omega) = (T(\bar{x};\Omega))^*$).

Or

(b) Let Ω be a non-empty convex set in \mathbb{R}^n . Let Ω_1 and Ω_2 be convex sets with $int(\Omega_1 \cap \Omega_2) \neq \phi$. Show that

$$T(\bar{x};\Omega_1\bigcap\Omega_2) = T(\bar{x};\Omega_1)\bigcap T(\bar{x};\Omega_2)$$

for any $\bar{x} \in \Omega_1 \bigcap \Omega_2$.

Q8~(15~pts): Use Karush-Kuhn-Tucker necessary conditions to determine all solutions of the following problem:

Maximize
$$f(x_1, x_2) = (x_1 + 2)^2 + (x_2 - 1)^2$$

subject to $-x_1 + x_2 - 2 \leq 0$

$$x_1^2 - x_2 \leq 0.$$

Q9 (10 pts): Sketch the feasible set defined by

$$S = \{ (x_1, x_2) : x_2 - 2 \le 0, \ 1 + (x_1 - 1)^2 - x_2 \le 0, \}.$$

Find the set of the feasible direction at point (1,1) of the feasible set S.

(5.5)
Define a convex set. Let
$$\Lambda_{1}$$
, $\Lambda_{2} \subset \mathbb{R}^{n}$ be convex sets
and be definition
Fix any $x, y \in \Lambda_{1} + \Lambda_{2}$ and $\lambda \in (0, 1)$ then
 $x = x_{1} + x_{2}$; $x_{1} \in \Lambda_{1}$ and $y_{2} \in \Lambda_{2}$
 $y = y_{1} + y_{2}$; $y_{1} \in \Lambda_{1}$ and $y_{2} \in \Lambda_{2}$
Thus $\lambda x + (1 - \lambda)y = \lambda (x_{1} + x_{2}) + (1 - \lambda) (y_{1} + y_{2})$
 $= \lambda x_{1} + (1 - \lambda)y_{1} + \lambda x_{2} + (1 - \lambda)y_{2}$
 $\in \Lambda_{1} + \Lambda_{2}$
Therefore $\Lambda_{1} + \Lambda_{2}$ is a convex set.
Define a convex function on a convex set. Let $f: \mathbb{R} \to \mathbb{R}$
be a convex function and let $+ : \mathbb{R} \to \mathbb{R}$ be nondecreasing
and convext on a convex set containing the range of the
function f . Show that $+ of x_{1}$ convex.
Preef:- Define
Take any $x_{1}, x_{2} \in \mathbb{R}^{n}$ and $\lambda \in (0, 1)$, then we have
by the convexity of f that

$$f(\lambda \Sigma_{1} + (1 - \lambda)\Sigma_{2}) \leq \lambda f(\Sigma_{1}) + (1 - \lambda) f(\Sigma_{2})$$

$$f(\lambda \Sigma_{1} + (1 - \lambda)\Sigma_{2}) \leq \lambda f(\Sigma_{1}) + (1 - \lambda) f(\Sigma_{2})$$

$$(f \circ f) (\lambda \Sigma_{1} + (1 - \lambda)\Sigma_{2}) = f(f(\lambda \Sigma_{1} + (1 - \lambda)\Sigma_{2}))$$

$$\leq f(\lambda F(\Sigma_{1}) + (1 - \lambda) f(\Sigma_{2}))$$

$$\leq \lambda f(f(\Sigma_{1})) + (1 - \lambda) f(\Sigma_{2})$$

$$\leq \lambda f(f(\Sigma_{1})) + (1 - \lambda) f(\Sigma_{2})$$

$$= \lambda (f \circ f)(\Sigma_{1}) + (1 - \lambda) (f \circ f)(\Sigma_{2})$$

$$f(x) = f(\bar{x}) + f(\bar{x})(x-\bar{x}) + \frac{f(\bar{x})}{2}(x-\bar{x})^{2} + --$$

$$f(x) = f(\bar{x}) + \nabla f(\bar{x})(x-\bar{x}) + \frac{||x-\bar{x}||}{|x-\bar{x}||} + \frac{|x-\bar{x}||}{|x-\bar{x}||} + \frac{|x-\bar{x}||}{|$$

(c) Define a Subgradient of a convex function. Use the
definition of Subgradient to determine the subdifferential
of convex function

$$f(x) = \int -x \quad x < 0$$

 $(x^2 \quad x < 0)$
 $(x^2 \quad x < 0)$

Define the directional derivative of an extended security
function at a fixed point. Use the definition of directional
derivative to determine
$$\Im F(c)$$
, where
 $f(x_1, x_3) = |x_1| + x_2^{-1}$
 $V \in \Im F(x_2), f'(x_3d) \ge \langle v, d \rangle$
 $f'(x_3d) = |x_{0}| + \frac{1}{2} +$

(c) Let
$$f_{1}(x) = -x$$
 and $f_{2}(x) = x$, $x \in R$. Use the
repult $\partial (\max f_{i})(\bar{x}) = Co \bigcup \partial f_{i}(\bar{x}), \bar{z} = 1/2 \cdot (f_{i}, f_{i}, \bar{z}))$
to compute $\partial f(o)$.
Sal: $f(x) = \max \{f_{i}(x), f_{3}(x)\}$
 $= 1x1$, $x \in R$
At $\bar{x} = 0$! $f_{i}(\bar{x}) = 0$ for $f(o) = \max(o, o)$
 $f_{2}(\bar{x}) = 0$ for $f(o) = \max(o, o)$
 $I(\bar{x}) = \{1, 2\}$
 $\partial f_{1}(\bar{x}) = \{1\}$
Thex fore $\partial f(\bar{x}) = \{1\}$
Thex fore $\partial f(\bar{x}) = 0$ ($\max(f_{i}, f_{3})) = Co \{\partial f_{i}(\bar{x}) \cup \partial f_{3}(\bar{x})\}$
 $= Co \{-1, 4\}$
 $= [-1, 4]$

(c) Let F:
$$\mathbb{R}^n \to \overline{\mathbb{R}}$$
 be a function and let $\overline{x} \in int (dom F)$.
Grateax derivative of f at \overline{x} is denoted by $f'_G(x)$ and
defined as
 $\langle f'_G(\overline{x},d), d \rangle = \lim_{d \to 0} \frac{f(\overline{x}+dd) - f(\overline{x})}{dx}$
Subbase F is Grateause differed \overline{x} , Let $V = f'_G(x)$, Then
 $f'(\overline{x},d) = \langle V,d \rangle = f'(\overline{x},d) \quad \forall d\in\mathbb{R}^n$ -()
For any $W \in \Im f(\overline{x})$, Then
 $f'(\overline{x},d) \leq \langle W,d \rangle \leq f'(\overline{x},d) \quad \forall d\in\mathbb{R}^n$ (d=0)
(J=V) $\forall d\in\mathbb{R}^n$.
 $\langle W-V_{3}d \rangle = 0 \quad \forall d\in\mathbb{R}^n$ (d=0)

$$\implies \psi - v = 0$$

or $\psi = v = f_G'(\bar{x})$
These fox $\Im f(\bar{x}) = \{f_G'(x)\}$
"

Define Fenchel conjugate of an extended real valued function.
Find Complete the Fenchel conjugate of

$$f(x) = \begin{cases} \frac{x^{b}}{b} & \text{if } x \ge 0 \\ \infty & \text{if } x < 0 \end{cases} \quad x \in \mathbb{R}, b \in \mathbb{R}, b > 1.$$
Sal: $f'(v) = \int_{x \downarrow b} \{vx - f(x) : x \in R\}$

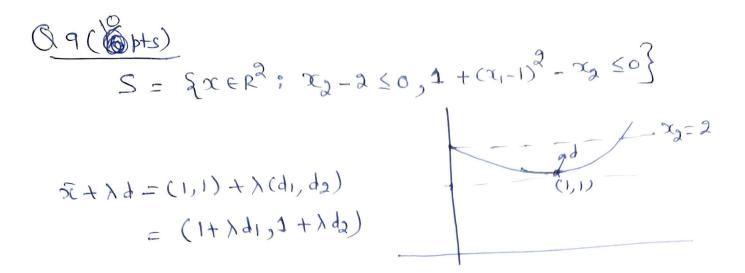
$$= \int_{x \downarrow b} \{vx - f(x) : x \in domf = [0, \infty)\}$$

$$= \int_{x \downarrow b} \{vx - f(x) : x \in domf = [0, \infty)\}$$
Let $f(x) = vx - \frac{x^{b}}{b}$ $(v \in \mathbb{R})$
 $f'(x) = v - \frac{x^{b-1}}{b}$ $(v \in \mathbb{R})$
 $f'(x) = \frac{1}{b} \sqrt{b^{b-1}} = (1 - \frac{b}{b}) \sqrt{(1 - \frac{b}{b})}$
Let $q > 1$ be defined by $\frac{1}{b} + \frac{1}{2} = 1$.
Then $f(v = \frac{1}{2}v^{2})$
 $f'(v) = \frac{1}{2}v^{2}$
 $f'(v) = \frac{1}{2}v^{2}$

$$f^{*}(v) = \begin{cases} \frac{\sqrt{2}}{2} & \frac{1}{2} & \frac{\sqrt{2}}{2} \\ 0 & \frac{1}{2} & \sqrt{2} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} \\ 0 & \frac{1}{2} \\ 0 & \frac{1}{2} \\$$

(b) State the state constraint qualification .
(c) State the Karrich - Kuth - Tucker necessary conditions
for a generical mathiment programming packer , belowing problem.
All salutions of the KKT conditions for the following problem.
Max
$$(x_1+2)^2 + (x_2-1)^2$$

All $-x_1+x_2 - 2 \le 0$
 $x_1^2 - x_2 \le 0$
Sed. $(-2x_1+2) + \lambda_1 (-1) + \lambda_2 (2x_1) = 0$
 $(-2x_2-3) + \lambda_1 (-1) + \lambda_2 (2x_1) = 0$
 $-2x_1 - 4 - \lambda_1 + 2\lambda_2 x_1 = 0$
 $-2x_1 - 4 - \lambda_1 + 2\lambda_2 x_1 = 0$
 $-2x_1 - 4 - \lambda_1 + 2\lambda_2 x_1 = 0$
 $-2x_1 - 4 - \lambda_1 - \lambda_2 = 0$
 $\lambda_1 (-x_1+x_2-2) = 0$
 $\lambda_2 (x_1^2 - x_2) = 0$
 $(1) \lambda_1 = \lambda_2 = 0$
 $-2x_1 - 4 - \lambda_1 = 0$
 $-2x_1 + 2 - \lambda_1 = 0$
 $-2x_1 - 4 - \lambda_1 = 0$
 $-2x_1 + 2 - \lambda_1 = 0$



$$\begin{split} \mathcal{Z}_{2} - 2 \leq 0 \implies 1 + \lambda d_{2} - 2 \leq 0 \\ \implies \lambda d_{2} \leq 1, \\ 1 + (\mathcal{Z}_{1} - 1)^{2} - \mathcal{X}_{3} \leq 0 \implies 1 + (1 + \lambda d_{1} - 1)^{2} - 1 - \lambda d_{2} \leq 0 \\ \implies \lambda^{2} d_{1}^{2} - \lambda d_{2} \leq 0 \\ \implies d_{2} \geqslant \lambda d_{1}^{2} \\ F_{D}(1, 1) = 2 d \in \mathbb{R}^{2} : d_{2} > 0 \\ \end{bmatrix} \\ \begin{aligned} F_{D}(1, 1) = 2 d \in \mathbb{R}^{2} : d_{2} > 0 \\ d_{3} > 0, d_{3} \in \mathbb{R}^{3} \\ \end{aligned}$$