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PART I: Solve ALL questions in this part
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1. Write all steps of Karmarkar’s algorithm for the standard Karmarkar canonical
form of a linear program.

Solution: Canonical form and notation.

min c⊤x s.t. Ax = 0, e⊤x = 1, x ≥ 0,

with x ∈ Rn, c ∈ Rn, A ∈ Rm×n (full row rank), and e = (1, . . . , 1)⊤.

Step 1 (Initialization). Choose a strictly feasible point

x(0) =
1
n

e (so Ax(0) = 0, e⊤x(0) = 1, x(0) > 0),

and set k = 0.

Step 2 (Stopping test). If c⊤x(k) ≤ ε (“sufficiently close to zero”), stop.
In that case x(k) can be (optimally) rounded to a basic feasible solution x̄.
Otherwise, continue.

Step 3 (Projection). Let

DR = diag
(
x(k)

)
, B =

ADR

e⊤

 ∈ R(m+1)×n.

Project DRc onto the subspace {y : ADRy = 0, e⊤y = 0}:

cp =
(

I − B⊤(BB⊤)−1B
)
(DRc).

Step 4 (Centered step and projective map). Fix α ∈ (0, 1) (take α = 1
4 for

convergence). Update in the scaled (centered) variables:

y(k+1) =
1
n

e − α√
n(n− 1)

cp

∥cp∥2
.

Map back to the original variables via the projective transformation:

x(k+1) = Φ
(
y(k+1)) =

DR y(k+1)

e⊤DR y(k+1)
.

Step 5 (Iterate). Set k← k + 1 and return to Step 2.
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2. State and prove the Weak Duality Theorem for linear programming. Then write
the dual of the following problem:

min z = 8x1 + 5x2 + 4x3

s.t. 4x1 + 2x2 + 8x3 = 12,
7x1 + 5x2 + 6x3 ≥ 9,
8x1 + 5x2 + 4x3 ≤ 10,

x1 ≥ 0, x2 is unrestricted in sign, x3 ≤ 0.

Solution: Weak Duality Theorem. For any primal–dual pair

(P) : min{c⊤x : Ax ≥ b, x ≥ 0}, (D) : max{b⊤y : A⊤y ≤ c, y ≥ 0},

if x is feasible for (P) and y is feasible for (D), then

c⊤x ≥ b⊤y.

Proof. From feasibility, Ax ≥ b and A⊤y ≤ c with x ≥ 0, y ≥ 0. Then

bTy = yTb ≤ yT(Ax) = (ATy)Tx ≤ ctx.

This proves weak duality.

Dual of the given problem. Primal formulation:

min z = 8x1 + 5x2 + 4x3

s.t. 4x1 + 2x2 + 8x3 = 12,
7x1 + 5x2 + 6x3 ≥ 9,
8x1 + 5x2 + 4x3 ≤ 10,

x1 ≥ 0, x2 free, x3 ≤ 0.

Dual problem:

max ω = 12y1 + 9y2 + 10y3

s.t. 4y1 + 7y2 + 8y3 ≤ 8,
2y1 + 5y2 + 5y3 = 5,
8y1 + 6y2 + 4y3 ≥ 4,

y1 free, y2 ≤ 0, y3 ≥ 0.
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3. A machine tool company decides to make four subassemblies through four
contractors. Each contractor is to receive only one subassembly. The cost (hun-
dreds of riyals) is given below. Assign the subassemblies to contractors so as
to minimize the total cost.

I II III IV

A 15 13 14 17

B 11 12 15 13

C 13 12 10 11

D 15 17 14 16

Solution: Given cost matrix (hundreds of riyals):

C =

I II III IV

A 15 13 14 17

B 11 12 15 13

C 13 12 10 11

D 15 17 14 16

Step 1 (Row reduction). Subtract the minimum of each row: rA = 13, rB =
11, rC = 10, rD = 14.

C(1) =

I II III IV

A 2 0 1 4

B 0 1 4 2

C 3 2 0 1

D 1 3 0 2

Step 2 (Column reduction). Column IV has no zero; subtract its minimum
1 from column IV.

C(2) =

I II III IV

A 2 0 1 3

B 0 1 4 1

C 3 2 0 0

D 1 3 0 1
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Now there are independent zeros that allow a full assignment.

Step 3 (Choose independent zeros). One valid choice:

(A, II), (B, I), (C, IV), (D, III).

This gives the unique contractor for each subassembly with no conflicts.

Step 4 (Compute total cost using the original matrix).

Cost = CA, II + CB, I + CC, IV + CD, III = 13 + 11 + 11 + 14 = 49 (hundreds).

Thus the minimum total cost is 49× 100 = 4900 riyals .

Optimal assignment: A→ II, B→ I, C → IV, D → III.
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4. Consider the linear fractional program

min
2x1 + 3x2

x1 + x2 + 1
s.t. 2x1 + x2 ≤ 3, x1 + 2x2 ≤ 3, x1, x2 ≥ 0.

Convert this problem to a linear program using the Charnes–Cooper transfor-
mation and then solve it.

Solution: We are asked to solve the fractional program

min
2x1 + 3x2

x1 + x2 + 1
s.t. 2x1 + x2 ≤ 3, x1 + 2x2 ≤ 3, x1, x2 ≥ 0.

Step 1. Charnes–Cooper transformation. Let yi = xi/(x1 + x2 + 1) for
i = 1, 2 and t = 1/(x1 + x2 + 1). Then y1 + y2 + t = 1, y1, y2, t ≥ 0. The
objective becomes

min Z = 2y1 + 3y2.

Constraints transform to

2y1 + y2 ≤ 3t,
y1 + 2y2 ≤ 3t.

Step 2. Standard form LP.

min 2y1 + 3y2

s.t. 2y1 + y2 − 3t ≤ 0,
y1 + 2y2 − 3t ≤ 0,
y1 + y2 + t = 1,
y1, y2, t ≥ 0.

Step 3. Two–phase simplex (from the tableau shown). - Phase I yields
feasibility. - Phase II optimization gives the final tableau with basic feasible
solution

y1 = 0, y2 = 3
5 , t = 2

5 .

Step 4. Recover original variables. Since t = 2/5, we get

x1 = y1/t = 0, x2 = (3/5)/(2/5) = 3
2 .

Objective value in the original problem:

Z∗ =
2(0) + 3(3/2)
0 + (3/2) + 1

=
9/2
5/2

= 9
5 = 1.8.

Final Answer: The optimal solution is x1 = 0, x2 = 3
2 with minimum value

Z∗ = 1.8.
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5. Solve by the Revised Simplex Method:

max z = x1 + 2x2

s.t. x1 + x2 ≤ 3,
x1 + 2x2 ≤ 5,
3x1 + x2 ≤ 6,

x1, x2 ≥ 0.

Solution: Problem. Maximize z = x1 + 2x2 subject to

x1 + x2 ≤ 3,
x1 + 2x2 ≤ 5,
3x1 + x2 ≤ 6,

x1, x2 ≥ 0.

Introduce slacks s1, s2, s3 ≥ 0 to obtain x1 + x2 + s1 = 3, x1 + 2x2 + s2 = 5,
3x1 + x2 + s3 = 6.

Initial data. Basic variables B = {s1, s2, s3} with B−1 = I and xB = b =
(3, 5, 6)⊤. Cost vectors: cB = (0, 0, 0), cN = (1, 2, 0, 0) for (x1, x2). Reduced
costs (using c̄j = cj − c⊤B B−1aj) are

c̄x1 = 1− 0 = 1, c̄x2 = 2− 0 = 2,

so with the sign convention in the working notes (∆j = −c̄j), we have ∆1 =
−1, ∆2 = −2 and the most negative ∆2 selects x2 as the entering variable.

Iteration 1. Compute the direction column

XR = B−1ax2 =


1

2

1

 7→ (after the row operations shown)


−2

1

1

 .

With current xB = (3, 5, 6)⊤, the ratio test on positive components of XR
gives

3
1

,
5
2

,
6
1
⇒ min =

5
2

,

so s2 leaves and x2 enters.

Perform the pivot (as in the tableau), yielding the new basis B = {s1, x2, s3}.
The updated inverse (from the notes) gives

B−1 =


1 0 0

−1
2

1
2 0

0 −1
2 1

 , xB = B−1b =


1
2

5
2

7
2

 .
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Optimality test. Using the first row of the revised tableau (or c⊤B B−1A− c⊤),
the reduced costs satisfy c̄x1 ≥ 0 and c̄si ≥ 0 (equivalently ∆j ≥ 0 in the
notes). Hence the basic solution is optimal.

Solution.
x1 = 0, x2 = 5

2 , s1 = 1
2 , s2 = 0, s3 = 7

2 .

Objective value
z = x1 + 2x2 = 0 + 2 · 5

2 = 5 .
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6. Solve the following problem by the Branch-and-Bound method:

max z = 7x1 + 9x2

s.t. − x1 + 3x2 ≤ 6,
7x1 + x2 ≤ 35,

x1 ≤ 7,
x2 ≤ 7,

x1, x2 ≥ 0, x1, x2 are integers.

(LP relaxation solution: x1 = 4.5, x2 = 3.5, max z = 63.)

Solution: Problem. Maximize z = 7x1 + 9x2 subject to

−x1 + 3x2 ≤ 6, 7x1 + x2 ≤ 35, x1 ≤ 7, x2 ≤ 7, x1, x2 ∈ Z≥0.

(Noninteger relaxation solution provided: x1 = 4.5, x2 = 3.5, z = 63.)

1) Branching choice. The LP optimum has both variables fractional. Choose
to branch on x1:

S-1: x1 ≤ 4, S-2: x1 ≥ 5.

2) Node S-1 (x1 ≤ 4). Solve the LP relaxation. With x1 ≤ 4, the active pair
−x1 + 3x2 ≤ 6 and x1 ≤ 4 gives

(x1, x2) = (4, 10
3 ), z = 7 · 4 + 9 · 10

3 = 28 + 30 = 58 (upper bound).

Since x2 is fractional, branch on x2:

S-1a: x2 ≤ 3, S-1b: x2 ≥ 4.

S-1a (x2 ≤ 3). The LP extreme point occurs at (x1, x2) = (4, 3), which is
integer and feasible;

z = 7 · 4 + 9 · 3 = 55 .

Record incumbent z∗ = 55.

S-1b (x2 ≥ 4). From −x1 + 3x2 ≤ 6 with x1 ≥ 0 we have 3x2 ≤ 6 ⇒ x2 ≤ 2,
contradicting x2 ≥ 4. Hence S-1b is infeasible and is fathomed.

3) Node S-2 (x1 ≥ 5). From 7x1 + x2 ≤ 35 we get x2 ≤ 35− 7x1 ≤ 0 (since
x1 ≥ 5). Thus the only feasible point in the relaxation is (x1, x2) = (5, 0)
with

z = 7 · 5 + 9 · 0 = 35 < z∗.

Node S-2 is fathomed by bound.

Conclusion. All branches are fathomed; the best incumbent is

x1 = 4, x2 = 3, z = 55 ,

which is the optimal integer solution.
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7. Solve the following integer program by the Cutting-plane method:

max z = x1 − 3x2

s.t. x1 − x2 ≤ 2,
2x1 + 4x2 ≤ 15,

x1, x2 ≥ 0, integers.

The optimal (LP) tableau of the relaxation is:

x1 x2 s1 s2 RHS

s1
3
2 0 1 1

4
23
4

x2
1
2 1 0 1

4
15
4

zj − cj
5
2 0 0 3

4
45
4

Solution: Maximization version. Maximize z = x1 − 3x2 subject to

x1 − x2 ≤ 2, 2x1 + 4x2 ≤ 15, x1, x2 ∈ Z≥0.

LP relaxation. Ignore integrality and solve

max z = x1 − 3x2 s.t. x1 − x2 ≤ 2, x1 + 2x2 ≤ 7.5, x1, x2 ≥ 0.

A quick bound shows optimality at an extreme point: from x1 − x2 ≤ 2 we
get

z = x1 − 3x2 ≤ (x2 + 2)− 3x2 = 2− 2x2 ≤ 2 (since x2 ≥ 0).

The bound z ≤ 2 is attained at (x1, x2) = (2, 0) (which also satisfies x1 +
2x2 ≤ 7.5). Hence the LP relaxation optimum is

(x1, x2) = (2, 0), z∗ = 2.

Integrality / Cutting-plane check. The LP optimum (2, 0) is already inte-
gral, so no Gomory cut is needed; the cutting-plane procedure would stop
immediately at this node.

Conclusion. For the maximization formulation of Q7 the optimal integer
solution is

x1 = 2, x2 = 0, z = 2 ,

coinciding with the LP-relaxation optimum.
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8. (a) Show that the feasible region of a linear programming problem is a convex
set.

(b) Use the complementary slackness conditions to solve the following primal
problem

min z = 2x1 + 3x2 + 5x3 + 2x4 + 3x5

s.t. x1 + x2 + 2x3 + x4 + 3x5 ≥ 4,
2x1 − 2x2 + 3x3 + x4 + x5 ≥ 3,

x1, x2, x3, x4, x5 ≥ 0,

given that an optimal dual solution is
(4

5 , 3
5

)
.

Solution: (a) Convexity of the feasible region. The feasible set of an LP
is an intersection of halfspaces/hyperplanes, each convex; intersections of
convex sets are convex. Hence the region is convex.

(b) Dual program is

max 4y1 + 3y2

subject to y1 + 2y2 ≤ 2,
y1 − 2y2 ≤ 3,
2y1 + 3y2 ≤ 5,
y1 + y2 ≤ 2,
3y1 + y2 ≤ 3,
y1, y2 ≥ 0.

Solution is y1 = 4
5 , y2 = 3

5 .

Applying CSS, we find in the dual constraints:
4
5
+

6
5
= 2 ✓

4
5
− 6

5
= −2

5 < 3 ⇒ x2 = 0

8
5
+

9
5
= 17

5 < 5 ⇒ x3 = 0

4
5
+

3
5
= 7

5 < 2 ⇒ x4 = 0

12
5

+
3
5
= 3

Since y1, y2 > 0, then

x1 + x2 + 2x3 + x4 + 3x5 = 4,
2x1 − 2x2 + 3x3 + x4 + x5 = 3.
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Given x2 = x3 = x4 = 0, i.e.

x1 + 3x5 = 4,
2x1 + x5 = 3.

⇒ x1 = 1, x5 = 1.

Optimal solution is (1, 0, 0, 0, 1).

Page 12



9. Consider the linear program

max z = 6x1 + 8x2

s.t. 5x1 + 10x2 ≤ 60,
4x1 + 4x2 ≤ 40,

x1, x2 ≥ 0.

An optimal tableau is:

x1 x2 s1 s2 RHS

x2 0 1 1
5 −1

4 2

x1 1 0 −1
5

1
2 8

zj − cj 0 0 2
5 1 64

Apply sensitivity analysis to determine the optimal solution if the RHS vector60

40

 is changed to

20

40

.

Solution: We are given the optimal tableau for

max z = 6x1 + 8x2 s.t.


5x1 + 10x2 ≤ 60,
4x1 + 4x2 ≤ 40,
x1, x2 ≥ 0,

whose final (optimal) basis is B = {x2, x1} with

B−1 =

 1
5 −1

4

−1
5

1
2

 , xB = B−1b =

2

8

 , z = 64.

Now the right–hand side is changed to b′ = (20, 40)⊤. Use sensitivity/dual
simplex to reoptimize.

1) Check feasibility of the current basis under b′.

x′B = B−1b′ =

 1
5 −1

4

−1
5

1
2


20

40



=

−6

16

.
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Since x′2 = −6 < 0, the basic solution is infeasible; apply the dual simplex
method (reduced costs were already optimal for the original problem).

2) Dual simplex pivot. Choose the most negative basic value as the leaving
row: the x2-row. In that row, consider columns with negative coefficients;

compute the ratios
zj − cj

arj
and select the minimum to enter. Performing the

indicated pivot (as in the working) yields a new basis with s2 entering and
x2 leaving.

After one pivot, the tableau becomes feasible with basic variables B =
{s2, x1} and right–hand side

xB =

24

4

 (i.e., s2 = 24, x1 = 4),

while x2 = 0. The reduced-cost row satisfies zj− cj ≥ 0, so optimality holds.

3) Answer. With b′ = (20, 40) the optimal solution is

x1 = 4, x2 = 0, z = 6 · 4 + 8 · 0 = 24 .
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10. (a) Find an initial basic feasible solution for the following transportation prob-
lem using Vogel’s Approximation Method (VAM):

D1 D2 D3 D4 Supply

S1 10 2 20 11 15

S2 12 7 9 20 25

S3 4 14 16 18 10

Demand 5 15 15 15

(b) Write the dual of the standard transportation problem and outline all the
steps of the u–v method to test optimality and improve a basic feasible solution.

Solution:

(a) Vogel’s Approximation Method (VAM)

Data. The transportation tableau is

C =


10 2 20 11

12 7 9 20

4 14 16 18

 , Supply (15, 25, 10), Demand (5, 15, 15, 15).

It is already balanced.

Penalties (first iteration).

• Row penalties: S1 : 10− 2 = 8, S2 : 9− 7 = 2, S3 : 14− 4 = 10.

• Column penalties: D1 : 10− 4 = 6, D2 : 7− 2 = 5, D3 : 16− 9 = 7,
D4 : 18− 11 = 7.

• Largest penalty = 10 (row S3). In row S3, the least cost is c31 = 4;
allocate min(10, 5) = 5 to (3, 1). Update: S3 → 5, D1 → 0.

Second iteration. With D1 satisfied, recompute penalties; largest is 8 (row
S1). In S1, least cost is c12 = 2; allocate min(15, 15) = 15 to (1, 2). Update:
S1 → 0, D2 → 0.

Third iteration. Remaining demands: D3 = 15, D4 = 15; supplies: S2 = 25,
S3 = 5. Choose column D4 (largest penalty tie). Least cost among remaining
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rows is at S3 (cost 18); allocate min(5, 15) = 5 to (3, 4). Update: S3 → 0,
D4 → 10.

Finish. Only S2 has supply left (25), and the remaining demands are D3 =
15, D4 = 10; allocate x23 = 15 and x24 = 10.

Initial BFS produced by VAM.

D1 D2 D3 D4 Supply

S1 0 15 0 0 15

S2 0 0 15 10 25

S3 5 0 0 5 10

Demand 5 15 15 15

Total transportation cost

TC = 15 · 2 + 15 · 9 + 10 · 20 + 5 · 4 + 5 · 18
= 30 + 135 + 200 + 20 + 90

= 475 .

(b) Dual of the standard transportation model and the u-v
(MODI) method

Primal (balanced TP, minimization).

min
m

∑
i=1

n

∑
j=1

cijxij

s.t.
n

∑
j=1

xij = ai (i = 1, . . . , m),

m

∑
i=1

xij = bj (j = 1, . . . , n),

xij ≥ 0.

Dual (potentials). Introduce ui for rows and vj for columns (both unre-
stricted in sign):

max
m

∑
i=1

aiui +
n

∑
j=1

bjvj

s.t. ui + vj ≤ cij (i = 1, . . . , m; j = 1, . . . , n).

u-v (MODI) optimality test and improvement.

Page 16



1. Start with any BFS (e.g., the VAM solution above).

2. Compute potentials: fix one potential (e.g., u1 = 0) and solve ui + vj =
cij on all basic cells to get all ui, vj.

3. For each nonbasic cell, compute the reduced cost rij = cij − (ui + vj)
(equivalently dij = ui + vj − cij = −rij).

• If all rij ≥ 0 (all dij ≤ 0), the BFS is optimal.

• Otherwise choose the cell with most negative rij (most positive
dij) to enter the basis.

4. Form the closed loop through basic cells with alternating +/− signs,
take θ as the minimum allocation on the− positions (leaving variable),
and update shipments.

5. Repeat steps 2–4 until optimality.
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