KING FAHD UNIVERSITY OF PETROLEUM &

MINERALS
DEPARTMENT OF MATHEMATICS

Comprehensive Exam, Term-251

Course Code: MATH 581 Course Title: Advanced Linear Programming

Name:
KFUPM ID:
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PART I: Solve ALL questions in this part
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3 10
PART II: Solve 5 questions out of the 7 questions in this part
4 14
5 14
6 14
7 14
8 14
9 14
10 14
TOTAL 100
Recommendation:

e Justify your answers thoroughly.



1. Write all steps of Karmarkar’s algorithm for the standard Karmarkar canonical
form of a linear program.

Solution: Canonical form and notation.

min ¢ x st Ax = 0, el x = 1, x>0,

with x € R*, c € R", A € R™*" (full row rank), and e = (1,...,1) .
Step 1 (Initialization). Choose a strictly feasible point
1
x(0) = Ee (so Ax© =0, eTx@ =1, x© > 0),

and set k = 0.

Step 2 (Stopping test). If c'xK) < ¢ (“sufficiently close to zero”), stop.
In that case x(*) can be (optimally) rounded to a basic feasible solution .
Otherwise, continue.

Step 3 (Projection). Let

AD

Dg =diag(x®), B=|" | e ROHIxn,
T
e

Project Dgc onto the subspace {y : ADry =0, e'y = 0}:
cp = <1 - BT(BBT)—lB> (Dge).
Step 4 (Centered step and projective map). Fix « € (0,1) (take a = 411 for

convergence). Update in the scaled (centered) variables:

YD) = 1, _ w v
n vn(n—1) llepll2

Map back to the original variables via the projective transformation:

(k+1)
(D) = @(yktD)y = Dry

eTDR y(k—H) ’

Step 5 (Iterate). Set k <— k + 1 and return to Step 2.
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2. State and prove the Weak Duality Theorem for linear programming. Then write
the dual of the following problem:

min z = 8x1 + 5xp + 4x3
s.t. 4x1+2xp + 8x3 =12,
7x1 4+ 5x3 +6x3 > 9,
8x1 4+ 5xp + 4x3 < 10,
x1 >0, xpisunrestricted in sign, x3 <0.

Solution: Weak Duality Theorem. For any primal-dual pair
(P): min{c'x: Ax > b, x >0}, (D): max{b'y: ATy <c, y>0},
if x is feasible for (P) and y is feasible for (D), then

c'x > by

Proof. From feasibility, Ax > b and ATy <cwithx >0,y > 0. Then

by =yTb < yT(Ax) = (ATy)Tx < c'x.
This proves weak duality. O
Dual of the given problem. Primal formulation:

min z = 8x1 + 5xp +4x3
s.t. 4x1 +2xp +8x3 =12,
7x1 +5xp + 6x3 > 9,
8x1 + 5xp +4x3 < 10,
x1 >0, xpfree, x3<0.

Dual problem:

max w = 12y; + 9y, + 10y3
st. 4y +7yr +8yz <8,
2y1 + 5y, +5y3 =5,
8y1+6y2 +4y3 > 4,
y1 free, 1y <0, y3>0.
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3. A machine tool company decides to make four subassemblies through four
contractors. Each contractor is to receive only one subassembly. The cost (hun-
dreds of riyals) is given below. Assign the subassemblies to contractors so as
to minimize the total cost.

I onm m Iv

15 13 14 17
1 12 15 13

13 12 10 11

g N W >

15 17 14 16

Solution: Given cost matrix (hundreds of riyals):

I I 1 1v

Al15 13 14 17
C= B|11 12 15 13
Cl13 12 10 11

D|15 17 14 16

Step 1 (Row reduction). Subtract the minimum of each row: r4 =13, rp =
11, rc =10, rp = 14.

[ I O IV
Al2 0 1 4
cV=pgl01 4 2
cl32 0 1
D|13 0 2

Step 2 (Column reduction). Column IV has no zero; subtract its minimum
1 from column IV.

I II I IV

2 01 3




Now there are independent zeros that allow a full assignment.

Step 3 (Choose independent zeros). One valid choice:
(A1), (B,I), (C,1V), (D,II).

This gives the unique contractor for each subassembly with no conflicts.

Step 4 (Compute total cost using the original matrix).

Cost = Ca 1+ Cp1+ Cc, v+ Cp,m = 13+ 11 + 11 + 14 = 49 (hundreds).

Thus the minimum total cost is 49 x 100 = |4900 riyals|.

Optimal assignment: A —1II, B—1, C =1V, D = IIL
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4. Consider the linear fractional program

2x1 + 3x
min =72 o o 4y <3, v +20 <3, 11,1 > 0.
X1 +x2+1
Convert this problem to a linear program using the Charnes-Cooper transfor-

mation and then solve it.

Solution: We are asked to solve the fractional program

2x1 + 3x
min L s.t. 2x1 +xp < 3, x1+2xp <3, x1,x0 > 0.
X1 +x2+1

Step 1. Charnes—Cooper transformation. Let y; = x;/(xq + x + 1) for
i=12andt =1/(x;+x+1). Theny; +y,+t =1, y1,y2,t > 0. The
objective becomes

min Z = 2y + 3y».

Constraints transform to

2y1+y2 < 3t,
y1+2yp < 3t.

Step 2. Standard form LP.

min 2y; + 312
s.t. 2y +y2 — 3t <0,
y1+2y—3t <0,
yi+y2+t=1,
y1,Yy2,t > 0.

Step 3. Two—-phase simplex (from the tableau shown). - Phase I yields
teasibility. - Phase II optimization gives the final tableau with basic feasible
solution

1] 8]

y1 =0, yzzg, t =
Step 4. Recover original variables. Since t = 2/5, we get
v =y1/t=0, x=(3/5)/(2/5)=3%.

Objective value in the original problem:

2(0)+3(3/2)  9/2

2 =0+ G/ 1 52

=1.8.

[6;(\\e]

Final Answer: The optimal solution is x; =0, xp = % with minimum value
Z* =1.8.
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5. Solve by the Revised Simplex Method:

max z = x1 + 2x»
s.t. x1+x <3,
x1+2x2 <5,
3x1+x2 <6,
x1,x2 > 0.

Solution: Problem. Maximize z = x; + 2x; subject to
x1+x <3,
x1+2x <5,
3x1 + x2 < 6,
X1, X2 > 0.
Introduce slacks sq1,s7,53 > 0 to obtain x1 + x2 +s1 = 3, x1 +2x, + s, = 5,
3x1 + xp + 53 =6.
Initial data. Basic variables B = {s1,5,,53} with B™! = I and x3 = b =
(3,5,6)". Cost vectors: cg = (0,0,0), cy = (1,2,0,0) for (x1,x7). Reduced
costs (using ¢j = ¢; — c; B~ 1a;) are
iy =1-0=1, tx,=2—-0=2,
so with the sign convention in the working notes (A; = —¢;), we have Ay =
—1, A = —2 and the most negative A; selects x, as the entering variable.

Iteration 1. Compute the direction column

1 —2
XRr = _1ax2 = [2| > (after the row operations shown) | 1
1 1

With current x5 = (3, 5,6) ', the ratio test on positive components of Xg
gives

= min =

—] W
[l )
Q1

N[ O1

so s leaves and x, enters.

Perform the pivot (as in the tableau), yielding the new basis B = {s1, x2,53}.
The updated inverse (from the notes) gives

1

1 0 0 5

-1 _ 1 1 —B1ly— |5
B = |—3 5 0l ., XB—B b= 5
1 7

|0 =2 1 2]




Optimality test. Using the first row of the revised tableau (or c;B_lA —c),
the reduced costs satisfy ¢y, > 0 and ¢;; > 0 (equivalently A; > 0 in the
notes). Hence the basic solution is optimal.

Solution.

=
N
I
NGl
~
2]
[y
I
N|—
~
2]
N
I
(=)
~
©»
W
I
NIN

x1 =0,

Objective value
z:x1+2x2:O+2-%:.
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6. Solve the following problem by the Branch-and-Bound method:
max z = 7x1 + 9x»
st. —x1+3x <6,
7x1+ xp < 35,
x1 <7,
x2 <7,
x1,x2 > 0, x1,xp are integers.

(LP relaxation solution: x; = 4.5, x, = 3.5, maxz = 63.)

Solution: Problem. Maximize z = 7x; + 9x; subject to
—x1+3x2 <6, 7x1+x <35 x1<7 x<7, x1,x€Z>.

(Noninteger relaxation solution provided: x; = 4.5, x = 3.5, z = 63.)

1) Branching choice. The LP optimum has both variables fractional. Choose
to branch on x;:
S-1: X1 S 4:, S-2: X1 Z 5.

2) Node S-1 (x; < 4). Solve the LP relaxation. With x; < 4, the active pair
—x1+3x2 < 6and x; < 4 gives

(x1,x02) = (4%), z=7-449-2=28+30= (upper bound).
Since x», is fractional, branch on x»:
S-la: xp < 3, S-1b: x, > 4.

S-1a (xp < 3). The LP extreme point occurs at (x1,x2) = (4,3), which is

integer and feasible;
z=7-4+9-3=55]
Record incumbent z* = 55.

S-1b (xy > 4). From —x1 + 3xp < 6 with x; > 0 we have 3x, < 6 = x, < 2,
contradicting x, > 4. Hence S-1b is infeasible and is fathomed.

3) Node S-2 (x; > 5). From 7x; + xo < 35 we get x, < 35 — 7x1 < 0 (since
x1 > 5). Thus the only feasible point in the relaxation is (x1,x2) = (5,0)
with

z=7-5+9-0=35|< z*.

Node S-2 is fathomed by bound.

Conclusion. All branches are fathomed; the best incumbent is

x1=4, x=3, z=055|

which is the optimal integer solution.
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7. Solve the following integer program by the Cutting-plane method:

max z = X1 — 3Xxp
st. x1—xp <2,
2x1 +4xy <15,
x1,x2 > 0, integers.

The optimal (LP) tableau of the relaxation is:

N3

)
.y
w

X1 X2 51

NI
(@)
—_

51

X2

—_
o

NI VTSP
e

NIUT | NI
(e
@)

Z]'—C]'

Solution: Maximization version. Maximize z = x; — 3x; subject to

X1 —xp <2, 2x1 +4xy <15, X1,X2 € Zzo.

LP relaxation. Ignore integrality and solve
max z=x; —3xp st x1—x2<2, x1+2x <75, x1,xp > 0.

A quick bound shows optimality at an extreme point: from x; —x, < 2 we
get

z=x1—3x < (xp+2)—3xp = 2—2x, < 2 (since x, >0).

The bound z < 2 is attained at (x1,x2) = (2,0) (which also satisfies x1 +
2xp < 7.5). Hence the LP relaxation optimum is

(x1,x2) = (2,0), zF=2.

Integrality / Cutting-plane check. The LP optimum (2,0) is already inte-
gral, so no Gomory cut is needed; the cutting-plane procedure would stop
immediately at this node.

Conclusion. For the maximization formulation of Q7 the optimal integer
solution is

x1=2,x=0z=2

4

coinciding with the LP-relaxation optimum.
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8. (a) Show that the feasible region of a linear programming problem is a convex
set.

(b) Use the complementary slackness conditions to solve the following primal
problem
min z = 2x1 + 3xp + 5x3 + 2x4 + 3x5
st. x1+ x4+ 2x3+ x4+ 3x5 >4,
2x1 —2xp +3x3 + x4 + x5 > 3,
X1, X2, X3, %4, %5 2 0,

given that an optimal dual solution is (%, 2).

Solution: (a) Convexity of the feasible region. The feasible set of an LP
is an intersection of halfspaces/hyperplanes, each convex; intersections of
convex sets are convex. Hence the region is convex.

(b) Dual program is

max 4y + 32

subject to y; +2y, < 2,
y1—2y2 < 3,
2y1 +3y2 <5,
n+ty: < 2,
3y1+y2 <3,
y1,y2 = 0.

Solution is y; = %, Y2 = %

Applying CSS, we find in the dual constraints:

§+g:2/
%—g:—§<3 =1 =0
?—)+§—157<5 = x3=0
g+§:§<2 = x,=0

T+o=3

Since y1,y2 > 0, then

X1+ X2 4+ 2x3 + x4 + 3x5 = 4,
2x1 —2xp +3x3+ x4 + x5 = 3.
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Given xp = x3 = x4 =0, i.e.

X1+ 3x5 =4,
2x1 + x5 = 3.

=x1=1, x5=1.

Optimal solution is (1,0,0,0,1).
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9. Consider the linear program
max z = 6x1 + 8xp

s.t. 5x1 + 10x, < 60,

4x1 + 4x, < 40,

x1,xp > 0.
An optimal tableau is:
X1 X S1 S RHS
X o 1 i -1l 2
X1 1 o -t 3 8
zi—¢i | 0 0 2 1 64

Apply sensitivity analysis to determine the optimal solution if the RHS vector

60 20
is changed to
40 40

Solution: We are given the optimal tableau for

5x1 + 10xp < 60,
4x1 + 4x, < 40,
X1, X2 >0,

maxz = 6x7 +8xp s.t.

whose final (optimal) basis is B = {x, x1} with

. 2
xp =B b= , z = 64.
8

Now the right-hand side is changed to b’ = (20, 40) ". Use sensitivity/dual

simplex to reoptimize.
1) Check feasibility of the current basis under b'.

Xy = B~ =
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Since x, = —6 < 0, the basic solution is infeasible; apply the dual simplex
method (reduced costs were already optimal for the original problem).

2) Dual simplex pivot. Choose the most negative basic value as the leaving
row: the xp-row. In that row, consider columns with negative coefficients;

Z PRp— C .

% and select the minimum to enter. Performing the
]

indicated pivot (as in the working) yields a new basis with s, entering and

x; leaving.

compute the ratios

After one pivot, the tableau becomes feasible with basic variables B =
{s2,x1} and right-hand side

24
Xp = (ie, sp =24, x1 = 4),

4

while x, = 0. The reduced-cost row satisfies zj — Cj > 0, so optimality holds.
3) Answer. With ' = (20,40) the optimal solution is

x1=4, x=0, z=6-4+8-0=][24]
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10. (a) Find an initial basic feasible solution for the following transportation prob-
lem using Vogel’s Approximation Method (VAM):

DI D2 D3 D4 | Supply

S1 10 2 20 11 15
S2 12 7 9 20 25
S3 4 14 16 18 10

Demand 5 15 15 15

(b) Write the dual of the standard transportation problem and outline all the
steps of the u—v method to test optimality and improve a basic feasible solution.

Solution:

(a) Vogel’s Approximation Method (VAM)

Data. The transportation tableau is

10 2 20 11
C=112 7 9 20/, Supply (15,25,10), Demand (5,15,15,15).

4 14 16 18

It is already balanced.

Penalties (first iteration).

* Row penalties: S1:10—-2=38,5,:9-7=2,53:14 -4 = 10.

¢ Column penalties: D; : 104 =6,D, :7—-2=5,D3:16 -9 =7,
Dy:18—-11=7.

* Largest penalty = 10 (row S3). In row Sz, the least cost is c3; = 4;
allocate min(10,5) =5 to (3,1). Update: S3 — 5, D; — 0.

Second iteration. With D; satisfied, recompute penalties; largest is 8 (row
S1). In Sy, least cost is c¢1p = 2; allocate min(15,15) = 15 to (1,2). Update:
S1—0,Dy — 0.

Third iteration. Remaining demands: D3 = 15, D4 = 15; supplies: S, = 25,
S3 = 5. Choose column Dy (largest penalty tie). Least cost among remaining
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rows is at S3 (cost 18); allocate min(5,15) = 5 to (3,4). Update: Sz — 0,
D, — 10.

Finish. Only S; has supply left (25), and the remaining demands are D3 =
15, D4 = 10; allocate x5 = 15 and x4 = 10.

Initial BFS produced by VAM.

D1 D2 D3 D4 Supply
S 0 0 0 15
S, 0 0 25
S 0 0 10

Demand | 5 15 15 15

Total transportation cost

TC=15-2+15-9+10-20+5-4+5-18
=30+ 135+ 200 + 20 + 90

_ 475

(b) Dual of the standard transportation model and the v
(MODI) method

Primal (balanced TP, minimization).

m n
min Z Z ci]'xi]'

i=1j=1

n
s.t. in]- =a; (i=1,...,m),
=1

m

in]' = b] (]: 1,...,n),
i=1

xi]'ZO.

Dual (potentials). Introduce u; for rows and v; for columns (both unre-
stricted in sign):

m n
max Za,-ui—l-ijvj
i=1 j=1
s.t.u,-+v]~§c,-]- (iZl,...,ﬂl,‘jZl,...,Tl).

v (MODI) optimality test and improvement.
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. Start with any BFS (e.g., the VAM solution above).

. Compute potentials: fix one potential (e.g., u; = 0) and solve u; +v; =
c;j on all basic cells to get all u;, v;.

. For each nonbasic cell, compute the reduced cost r;; = ¢;; — (u; + v]-)
(equivalently d;; = u; +v; — ¢;j = —1yj).
e Ifall rij 2 0 (all d,-]- < 0), the BFS is optimal.

* Otherwise choose the cell with most negative r;; (most positive
dj;) to enter the basis.

. Form the closed loop through basic cells with alternating +/— signs,
take 6 as the minimum allocation on the — positions (leaving variable),
and update shipments.

. Repeat steps 2—4 until optimality.
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