KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS
 MATHEMATICS DEPARTMENT

STAT 212 BUSINESS STATISTICS II
Semester 231, Second Exam

November 09, 2023

Time allowed $\underline{100}$ minutes

Name: \qquad ID \#: \qquad
Section \#:

Important Instructions:

Check that this exam has $\underline{20}$ questions

- All types of mobile phones or smart watches are NOT allowed during the examination.
- Use HB 2.5 pencils only.
- Use a good eraser. DO NOT use the erasers attached to the pencil.
- Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- When bubbling, make sure that the bubbled space is fully covered.
- When erasing a bubble, make sure that you do not leave any trace of penciling
- Formula sheet will be provided to you in exam. You are not allowed to bring, with you, formula sheet or any other printed/written paper.

A bank conducted a survey to know how people feel about online discounts tailored to their individual interests. The following table shows the results for the survey:

How people feel?	Age group			
	$18-24$ years	$25-34$ years	$35-49$ years	Total
Opposed	20	38	47	105
Approve	30	12	3	45
Total	50	50	50	150

The bank wants to test if there is evidence of a difference among the proportions of different age groups who oppose discounts tailored to their interests, at 5% level of significance.

Using the above information answer the following $\underline{4}$ questions

1. What is expected frequency for people who are in the $25-34$ years age group and approve of the online discounts that are tailored to their individual interest?
A. 15
B. 35
C. 70
D. 12
E. 38
2. To test if there is evidence of a difference in proportion among the proportions of different age groups who oppose discounts tailored to their interests. The test statistic is:
A. 36.00
B. 22.24
C. 20.00
D. 16.45
E. 10.04
3. To test if there is evidence of a difference in proportion among the proportions of different age groups who oppose discounts tailored to their interests, at 5\% level of significance. The critical value is:
A. 5.9915
B. 7.3778
C. 3.8415
D. 5.0239
E. 7.8147
4. To test if there is evidence of a difference in proportion among the proportions of different age groups who oppose discounts tailored to their interests, at 5% level of significance. The conclusion is:
A. Reject H_{o}. There is evidence of a difference in the proportions among the age groups who oppose discounts tailored to their interests.
B. Don't reject H_{o}. There is no evidence of a difference in the proportions among the age groups who oppose discounts tailored to their interests.
C. Don't reject H_{o}. There is evidence of a difference in the proportions among the age groups who oppose discounts tailored to their interests.
D. Reject H_{o}. There is no evidence of a difference in the proportions among the age groups who oppose discounts tailored to their interests.
E. The test is inconclusive.

The CEO of a large metropolitan health-care facility would like to assess the effect of the recent implementation of the Six Sigma management approach on customer satisfaction. A random sample of 100 patients is selected from a list of patients who were at the facility the past week and also a year ago:

Satisfied Last Year	Satisfied Now		
	NO	Total	
YES	65	12	77
NO	15	8	23
Total	80	20	100

At the 2.5% level of significance, to test that there is evidence that satisfaction was lower last year, prior to introduction of Six Sigma management

Based on this information, answer the next 4 questions
5. The appropriate null hypothesis is:
A. $H_{0}: \pi_{\text {prior }} \geq \pi_{\text {after }}$
B. $H_{o}: \pi_{\text {prior }}=\pi_{\text {after }}$
C. $H_{o}: \pi_{\text {prior }} \leq \pi_{\text {after }}$
D. $H_{o}: \pi_{\text {prior }} \neq \pi_{\text {after }}$
E. $H_{o}: \pi_{\text {prior }}>\pi_{\text {after }}$
6. The proportion of patients that weren't satisfied last year is:
A. 0.23
B. 0.77
C. 0.80
D. 0.20
E. 0.5
7. What is the value of test statistic?
A. -0.58
B. 5.20
C. -5.20
D. 15.59
E. -15.59
8. The p-value for the test is:
A. 0.2810
B. 0.7190
C. 1
D. 0
E. 0.3156

An agent for a residential real estate company in a large city would like to be able to predict the monthly rental cost (in \$) for apartments, based on the size of an apartment, as defined by square footage. The agent selects a sample of $\mathbf{2 5}$ apartments in a particular residential neighborhood and gathers the following data:
$\sum x=27400, \quad \sum y=34825, \quad \sum x^{2}=33242628, \quad \sum y^{2}=51788125, \quad \sum x y=40608800$
Based on this information, answer the next $\underline{\mathbf{5}}$ questions
9. The mean change in the rental cost for one square footage increase in the size of the apartment is:
A. 0.75978
B. 1.06513
C. 560.27652
D. 0.01211
E. 3.21190
10. The estimated intercept is:
A. 560.28
B. 0.76
C. 10.07
D. 422.90
E. 321.10
11. The percentage of variation in the rental cost that is explained by the variation in the size of the apartment is:
A. 56.59%
B. 72.24%
C. 67.90%
D. 38.21%
E. 98.78%
12. Predict the monthly rent for an apartment that has 1000 square feet
A. $\$ 1320.06$
B. $\$ 636.26$
C. $\$ 8158.28$
D. $\$ 1625.38$
E. $\$ 833.20$
13. The standard error of the estimate is:
A. 248.7
B. 14.3
C. 312.7
D. 101.3
E. 304.9

An owner of a supermarket developed a linear regression model between the waiting time at the counter and the number of customers (where y is the waiting time and x is the number of customers). The model is given by:

$$
\hat{y}=-0.448+0.1285 X
$$

With the following summary statistic:
$S e\left(\widehat{\beta_{1}}\right)=0.013, \quad S_{y y}=46.632, \quad R^{2}=0.7873, n=30, \bar{x}=20.3, S_{x x}=2224.3$
Based on this information, answer the next $\underline{5}$ questions
14. The estimated correlation between the number of customers and the waiting time is:
A. 0.887
B. -0.887
C. 0.787
D. -0.787
E. 0.923
15. To test that the linear relationship between the number of customers and the waiting time is significant, at 2\% level of significance. The test statistic is:
A. 9.8846
B. -34.46
C. 1.127
D. 8.873
E. 13.101
16. To test that the linear relationship between the number of customers and the waiting time is significant, at 2% level of significance. The critical value is:
A. 2.4671
B. 2.0484
C. 2.4573
D. 2.0423
E. 1.8813
17. Predict the waiting time when the number of customers is 20 .
A. 2.122 minutes
B. 3.018 minutes
C. 3.560 minutes
D. 1.543 minutes
E. 2.670 minutes
18. A 98% confidence interval for the mean waiting time when the number of customers is 20
A. $[1.8538,2.3902]$
B. $[1.4345,2.5590]$
C. $[1.1210,2.6443]$
D. $[-1.8538,2.3902]$
E. $[2.0112,3.2331]$
19. If we use the χ^{2} method of analysis to test for the differences among 6 proportions, the degrees of freedom are equal to
A. 5
B. 4
C. 6
D. $\mathrm{n}-1$
E. 1
20. If we use the χ^{2} method of analysis to test for the differences among 4 proportions, and the test statistic was found to be 7.8147. The p-value is:
A. 0.05
B. 0.025
C. Between 0.01 and 0.025
D. Between 0.005 and 0.01
E. Between 0.1 and 0.2

