ററ	DF	000
cO		000

STAT 212 BUSINESS STATISTICS II Semester 233, Final Exam August 15, 2023

CODE	nnn
CODE	000

Time allowed 120 minutes

Name: ___

ID #:_____

Important Instructions:

Check that this exam has 20 questions

- All types of mobile phones or smart watches are NOT allowed during the examination.
- Use HB 2.5 pencils only.
- Use a good eraser. DO NOT use the erasers attached to the pencil.
- Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- When bubbling, make sure that the bubbled space is fully covered.
- When erasing a bubble, make sure that you do not leave any trace of penciling
- Formula sheet will be provided to you in exam. You are not allowed to bring, with you, formula sheet or any other printed/written paper.

Ex 14.5, 14.13, 14.27

How does horsepower and weight affect the mileage of family sedans? Data from a sample of twenty 2010 family sedans were collected and the results of the regression model and ANOVA table shown in the following output

ANOVA						
					Significance	
	df	SS	MS	F	F	
Regression	2	27.8053	13.9026	7.5886	0.0044	
Residual	17	31.1447	1.8320			
Total	19	58.9500				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	41.5895	6.3089	6.5922	0.0000	28.2788	54.9001
Horsepower	-0.0222	0.0105	-2.1257	0.0485	-0.0443	-0.0002
Weight	-0.0041	0.0020	-2.0074	0.0609	-0.0084	0.0002

Based on the above Answer the next six questions

1. For a given weight, each increase of one unit in horsepower is estimated to result in a mean decrease in MPG of

A. 0.0222.

- B. −0.0222.
- C. 0.0041.
- D. -0.0041.
- E. No practical meaning here because it would have meant the estimated mean gasoline mileage when a car has 0 horsepower and 0 weight.
- 2. Predict the miles per gallon for cars that have 190 horsepower and weigh 3,500 pounds is:

A. 23.0215 MPG

- B. 41.0242 MPG
- C. 37.2280 MPG
- D. 39.7327 MPG
- E. 31.5222 MPG
- 3. The percentage of the variation in MPG can be explained by variation in horsepower and variation in weight, taken in account the sample size and the independent variables is
 - A. 40.95%.
 - B. 41.17%.
 - C. 27.81%.
 - D. 58.95%.
 - E. 31.14%.

- 4. A 95% confidence interval estimate of the population slope between mileage and horsepower:
 - A. Between 0.0443 and 0.0002
 - B. Between 0.0084 and 0.0002
 - C. Between 28.2788 and 54.9001
 - D. Between -0.0405 and -0.00393
 - E. Between 0.00758 and 0.00062
- 5. At 5% level of significance, which of the following statements is NOT true?
 - A. Only the Weight is significant
 - B. Only the Horsepower is significant
 - C. Only the Weight is not significant
 - D. The overall model is significant
 - E. There is no meaning of the MPG when the horsepower is zero and weight is zero
- 6. Given that SSR_{(horsepower}) =20.4225 and SSR_(weight) = 19.5268, the proportion of variation in the MPG is explained by the horsepower while controlling for (holding constant) the weight.
 - <mark>A. 20.99%</mark>
 - B. 19.16%
 - C. 47.17%
 - D. 40.95%
 - E. 8.278%

Ex 14.41

7. The marketing manager of a large supermarket chain faced the business problem of determining the effect on the sales of pet food of shelf space (X_1) and whether the location of the product (X_2) was placed at the front $(X_2 = 1)$ or back $(X_2 = 0)$ of the aisle. Data are collected from a random sample of 12 equal-sized stores. believes that the appropriate model is

$$\hat{y} = 130 + 7.4 X_1 + 45 X_2$$

The predicted sales for the product when the shelf space is 8.5 feet, and it is placed at the front is:

A.	<mark>237.9</mark>
В.	192.9
C.	182.9
D.	229.9
E.	259.9

You constructed simple linear regression models to investigate the relationship between monthly sales for a chain of sporting goods stores and five independent variables. Based on the following MINITAB output

Best	Subse	ts Regr	ession:	y versus x	1, x2, x	3, x4,	x5	Co	rrelatio	on: y, x1,	, x2, x3,	x4, x5	
Respo	onse is	У						1	У	x1	x2	x3	x4
		R-Sq	R-Sq	Mallows		~ ~ .	x x x	x1	0.041				
Vars	R-Sq	(adj)	(pred)	Cp	S	1 2 3							
1	24.1	21.9	17.2	-1.8	802004		x	x2	0.112	-0.203			
1	14.7	12.3	4.0	2.1	849860	2	x	712	0.112	0.200			
2	24.3	20.0	8.7	0.0	811809	Х	Х						
2	24.2	19.9	14.0	0.1	812572		ХХ	x3	0.384	0.387	0.032		
3	24.4	17.8	5.4	2.0	823193	Х	ХХ						
3	24.4	17.7	0.0	2.0	823626	ХХ	Х						
4	24.4	15.3	0.0	4.0	835508	X Z	ххх	x4	0.490	0.193	0.217	0.804	
4	24.4	15.3	0.0	4.0	835563	ХХ	ХХ						
5	24.4	12.6	0.0	6.0	848433	XXX	ххх						
								x5	0.322	0.265	0.381	0.682	0.712

Based on the above Answer the next three questions

- 8. If only one variable were be brought into the model, which variable should be if the goal is to explain the highest possible percentage of variation in the dependent variable?
 - A. X_4 has the highest correlation with monthly sales.
 - B. X_1 has the highest correlation with monthly sales.
 - C. X_2 has the highest correlation with monthly sales.
 - D. X_5 has the highest correlation with monthly sales.
 - E. X_3 has the highest correlation with monthly sales.
- 9. Using R²_{adj}, the model should be taken into consideration contains

A. 1 variable .

- B. 4 variables.
- C. 2 variables.
- D. 3 variables.
- E. 5 variables.
- 10. If you are going to fit a regression model using the backward elimination selection method, what is the first predictor to be removed

Λ	V
Α.	X 1
	441

- B. X₂
- C. *X*₄
- D. *X*₅
- E. *X*₃

- 11. Consider a nine-year moving average used to smooth a time series that was first recorded in 2002. How many years of values in the series are lost when computing all the nine-year moving averages?
 - A. A total of 8 years.
 - B. A total of 4 years.
 - C. A total of 6 years.
 - D. A total of 5 years.
 - E. A total of 9 years.
- 12. You are using exponential smoothing on an annual time series concerning total revenues (in millions of dollars). You decide to use a smoothing coefficient of w = 0.2, and the exponentially smoothed value for 2010 is $E_{2010} = 0.2(12.1) + 0.8(9.4)$. the smoothed value of this series in 2011 if the value of the series in that year is \$11.5 million is
 - A. 10.252
 B. 11.98
 C. 10.392
 D. 9.96
 E. 9.82

13. If the coefficient of determination between two independent variables is 75%, then the VIF equal to

- A. <mark>4</mark>
- B. 5
- C. 3
- D. 2
- E. 1
- 14. The linear trend forecasting equation for an annual time series containing 42 values (from 1969 to 2010) on net sales (in billions of dollars) is $\hat{Y}_i = 1.2 + 0.5X_i$. The projected trend forecast two years after the last value is
 - A. 22.7 million dollars
 - B. 23.2 million dollars
 - C. 22.2 million dollars
 - D. 21.7 million dollars
 - E. 21.2 million dollars

Ρ	а	g	е	

| 6

Betts Electronics purchases three replacement parts for robotic machines used in its manufacturing process. Information on the price of the replacement parts and the quantity purchased is given below:

	PR	RICE	QUANTITY		
PART	2000	2016	2000	2016	
А	\$ 2.00	\$ 5.50	120	220	
В	\$ 2.50	\$ 6.00	90	110	
С	\$ 4.00	\$ 10.00	80	95	

Using the above information to answer the following **three** questions:

- 15. What is the simple price index for part B in 2016, using 2000 as a base year:
 - <mark>A. 240%</mark>
 - B. 86.54%
 - C. 120%
 - D. 41.66%
 - E. 48.96%

$$I_p = \frac{P_{2016}}{P_{2000}} * 100\% = \frac{6}{2.5} * 100\% = 240\%$$

16. The aggregate price index for 2016, using 2000 as a base year is equal to:

- B. 39.53%
- C. 86.45%
- D. 210.96%
- E. 198.78%

$$I_{ag} = \frac{\sum P_{2016}}{\sum P_{2000}} * 100 = \frac{P_{A,16} + P_{B,16} + P_{C,16}}{P_{A,00} + P_{B,00} + P_{C,00}} = \frac{5.5 + 6 + 10}{2 + 2.5 + 4} * 100 = 252.94\%$$

17. The Laspeyres price index for 2016 using 2000 as the base period is equal to:

<mark>A. 254.78%</mark>

- B. 257.53%
- C. 38.83%
- D. 39.25%
- E. 270.45%

$$I_{L} = \frac{\sum P_{i}^{t} Q_{i}^{0}}{\sum P_{i}^{0} Q_{i}^{0}} * 100 = \frac{P_{A,16}Q_{A,00} + P_{B,16}Q_{B,00} + P_{C,16}Q_{C,00}}{P_{A,00}Q_{A,00} + P_{B,00}Q_{B,00} + P_{C,00}Q_{C,00}} = \frac{5.5 * 120 + 6 * 90 + 10 * 80}{2 * 120 + 2.5 * 90 + 4 * 80} * 100 = 254.78\%$$

18. In forecasting a quarterly time series over the five year period from the first quarter of 2006 through the fourth quarter of 2010, the exponential trend forecasting equation is given by

 $\log \hat{y} = 3 + 0.1 X_i - 0.25 Q1 + 0.2 Q2 + 0.15 Q3$

where quarter zero is the first quarter of 2006. Take the antilog of the appropriate coefficient from this equation, the estimated quarterly compound growth rate in the price is:

A.	25.89%

- B. 58.49%
- C. 10.51%
- D. 41.25%
- E. 43.77%
- 19. A third-order autoregressive model is fitted to an annual time series with 17 years (from 2000 to 2016) and has the following autoregressive equation

$$\hat{Y}_t = 4.5 + 1.8 Y_{t-1} + 0.8 Y_{t-2} + 0.24 Y_{t-3}$$

The three most recent values are $Y_{2014} = 23$, $Y_{2015} = 28$ & $Y_{2016} = 34$, the forecast value for 2018 equal to

<mark>A. 206.936</mark>

- B. 93.62
- C. 200.936
- D. 205.736
- E. 410.9048

20. : Which of the following would be an appropriate alternative hypothesis?

- A. The population proportion is less than 60 percent.
- B. The sample proportion is less than 60 percent.
- C. The population proportion is no less than 60 percent.
- D. The sample proportion is no less than 60 percent.
- E. The population proportion is no more than 60percent.