KING FAHD UNIVERSITY OF PETROLEUM & MINERALS, DHAHRAN, SAUDI ARABIA DEPARTMENT OF MATHEMATICS

STAT 310: Regression Analysis

Term 211, Second Major Exam Monday November 22, 2021, 06:00 PM

Name:	ID #:	

Question No	Full Marks	Marks Obtained
1	08	
2	08	
3	18	
4	11	
5	6 (Bonus)	
Total	45	

Instructions:

- 1. Formula sheet will be provided to you in exam. You are not allowed to bring, with you, formula sheet or any other printed/written paper.
- 2. Mobiles are not allowed in exam. If you have your **mobile** with you, **turn it off** and put it **under your seat** so that it is visible to proctor.
- 3. Show all the calculation steps. There are points for the steps so if your miss them, you lose points.
- 4. Derive every result that you use in your solution, unless mentioned otherwise.
- 5. Anything bold in a question indicates that it is a vector or matrix.

[Blank Page]

Q1: (4+4 = 8 points) Consider a multiple linear regression model $y_{n \times 1} = X_{n \times (k+1)} \beta_{(K+1) \times 1} + \epsilon_{n \times 1}$ where the OLS estimates are given as $\hat{\beta} = (X'X)^{-1}X'y$ and $H = X(X'X)^{-1}X'$.

a) Show that the vector of residuals can be written as $\boldsymbol{e}_{n\times 1} = (\boldsymbol{I}_{n\times n} - \boldsymbol{H}_{n\times n})\boldsymbol{\epsilon}_{n\times 1}$.

b) Mathematically, prove that $Var(\boldsymbol{e}_{n \times 1}) = \sigma^2(\boldsymbol{I}_{n \times n} - \boldsymbol{H}_{n \times n})$

Regression Analysis

Q2: (8 points) Consider a multiple linear regression model $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$ where β_0, β_1 and β_2 are unknown parameters and x_i 's are fixed. We transform all the variables using unit length scaling and fit the model $y_i^0 = b_1 w_{i1} + b_2 w_{i2} + \epsilon_i$ which can be written in the matrix notation as: $y_i^0 = Wb + \epsilon_i$

$$y^0 = Wb + \varepsilon.$$

Mathematically, show that the diagonal elements of $(\mathbf{W}'\mathbf{W})^{-1}$ matrix are equal to $\frac{1}{1-r_{x_1x_2}^2}$ where $r_{x_1x_2} = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{1-r_{x_1x_2}^2}$ where $r_{x_1x_2} = \sum_{i=1}^{n} \frac{1}{1-r_{x_1x_2}^2}$

 $\frac{\sum[(x_{i1}-\bar{x}_1)(x_{i2}-\bar{x}_2)]}{\sqrt{\sum(x_{i1}-\bar{x}_1)^2 \times \sum(x_{i2}-\bar{x}_2)^2}}$ is the correlation coefficient between x_1 and x_2 .

$$w_{ij} = \frac{x_{ij} - \bar{x}_j}{\sqrt{s_{jj}}}, y_i^0 = \frac{y_i - \bar{y}}{\sqrt{s_{yy}}}, s_{jj} = \sum_{i=1}^n (x_{ij} - \bar{x}_j)^2, s_{yy} = \sum_{i=1}^n (y_i - \bar{y})^2 \ \forall \ i = 1, 2, \dots, n \text{ and } j = 1, 2$$

Good Luck

Regression Analysis

Report at least 6 decimal points.

Q3: Code_

Write code # before starting.

Attached file contains the data on gasoline mileage performance for 25 automobiles where the description of variables is as follows:

 $y \rightarrow Miles/gallon$ $x_1 \rightarrow Compression ratio$

 $x_1 \rightarrow \text{Complession ratio}$ $x_3 \rightarrow \text{Overall length (in.)}$ $x_2 \rightarrow \text{Rear axle ratio}$ $x_4 \rightarrow \text{Weight (lb)}$

Fit the model $y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \epsilon$ and test the following linear constraints: $H_0: 2\beta_1 - \beta_2 = 1$ and $\beta_3 + 10\beta_4 = 0.1$ $H_1:$ At least one constraint in H_0 is not true. Answer the following questions:

(1 pt.) Decision and conclusion:

Perform a thorough influential analysis on the given data and answer the following questions:

(2 pts.) Cook's $D_9 =$ _____ Comment:

(2 pts.) *DFBETAS*_{2,13} = _____ Comment:

(2 pts.) $DFFITS_{17} =$ _____ Comment:

(2 pts.) *COVRATIO*₂₁ = _____ Comment:

STAT 310

Regression Analysis

Report at least 6 decimal points.

Q4: Code_

Write code # before starting.

Attached file contains the data on response variable y and predictor x. Suppose that the relationship between y and x is intrinsically linear and is given as:

$$y = \sqrt{\cos^{-1}[\beta_0 + \beta_1 \sin \sqrt{X}]}.$$

Transform the variables such that the relationship becomes linear. The new variables are

(4 pts.) y' =_____ and x' =_____

Fit a simple linear regression model on the transformed variables. The fitted model is given as:

(2 pts.) $\hat{y}' = [__] + [_]x'$

Predict the original response y when x = 0.9. Also construct a 95% prediction interval for original y when x = 0.9.

(2 pts.) $\hat{y}_{x=0.9} =$ _____

(3 pts.) Lower Prediction Limit = _____ U

Upper Prediction Limit = _____

[Good Luck]