STAT 416- Major Exam 1

KFUPM, Department of Mathematics and Statistics

Kroumi Dhaker, Term 221

1 Exercise 1(20=3-+4+3+5+5 points)

Consider the following Markov chain with states {0, 1,2, 3,4} and transition probabilities matrix given by

00 5 3 1
02 1 00
P=10 %1 2 0 0
000 10
1 00 00

1. Draw the transition graph. A 2'
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2. Determine the classes, and specify which are positive recurrent, null recurrent or transient.
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3. Find the period of all states.
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2 Exercise 2(15=4+6-+5 points)

In a good weather year the number of storms is Poisson distributed with mean 1: in a bad year it is Poisson
distributed with mean 3. Suppose that any year’s weather conditions depends on past years only through the
previous year’s condition. Suppose that a good year is equally likely to be followed by a bad year as by a good
year. A bad year is twice as likely to be followed by a bad year as by a good year. Suppose that last year -call

it year 0- was a good year. TWO s(-uho . G. . awd ) B_. bQA

1. Find the expected total number of storms in the next two years.
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2. Find the probability there are no storms in year 3.
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3. Find the long-run average number of storms per year.
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3 Exercise 3(15=8+7 points)

Ellen bought a share of stock for $10, and it is believed that the stock price (day by day) will increase by $1
with probability p = 0.55 or decrease by $1 with probability ¢ = 0.45.

1. What is the probability that Ellen’s stock reaches the high value of $15 before the low value of $57
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2. What is the probability that Ellen will become infinitely rich?

& &e— &N\ (%\n—?o
O SR ) MIN:OMI DI

4 o 40
40
Doty = Do _(F =4 b -1 0“5 = 0.8655
N-> 0 N-? 0 "
Hint: U; =

4 Exercise 4(15=7+8 points)

The number of individuals produced by each individual in a branching process is 1 or 2 with the same
probability p, and 0 with probability 1 — 2p, for 0 < p < 1/2, independently of all others.

1. Find the condition on p so that the extinction probability is less than 1.
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2. Find the extinction probability under this condition.
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5 Exercise 5(15=8+7 points)

Consider a random walk on A, B,C, D, E, I given by Figure 1. For example if at time n we are at E, then at
time n + 1, we will be at A, C, D or F with probability 1/4

1. Find the proportion of long-term time that we are at F'.

We hawe d[A) =d(c)=3, d(B)=d(D)=d[F)=2 omd d(E)=H4

M 'TVFz é(F)ﬁ:—?, = 4/8
>du) A3+%e+d
A




Figure 1: Random walk on graphs.

2. Find the number of steps expected to return the first time to A if we leave A.
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6 Exercise 6(10 points)

Four out of every six trucks on the road are followed by a car, while only two out every seven cars are followed

by a truck. What fraction of vehicles on the road are trucks?

\ehide n o Fruck (_T) o1 car (Q).
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