Mid-Term Exam STAT 501 (Term 231)

By Dr. Maher Boudabra KFUPM

November 29, 2023

Full Name:
\#ID: \square

Exercise 1. Let X be a random variable with the following c.d.f

$$
F(x)=\tan (x) \mathbf{1}_{\left(0, \frac{\pi}{8}\right)}+\left(\left(x-\frac{\pi}{8}\right)^{2}+\frac{1}{2}\right) \mathbf{1}_{\left[\frac{\pi}{8}, \frac{\pi}{4}\right)}+\mathbf{1}_{\left[\frac{\pi}{4},+\infty\right)}
$$

Figure 0.1: The plot of F
You can use without proof $\tan \left(\frac{\pi}{8}\right)=\sqrt{2}-1$.

1. What is the type of $X ? X$ is mixed (continuous and discrete).
2. What is the support of X ? $\left(0, \frac{\pi}{4}\right]$ or $\left[0, \frac{\pi}{4}\right]$
3. Write down the point masses of X as well as their probabilities (in case of existence). Point masses correspond to the jumps in the c.d.f. That is, they are $\frac{\pi}{8}, \frac{\pi}{4}$.
4. Find the law of $X, d F(x)$.

$$
d F(x)=\sec ^{2}(x) \mathbf{1}_{\left(0, \frac{\pi}{8}\right)}+2\left(x-\frac{\pi}{8}\right) \mathbf{1}_{\left(\frac{\pi}{8}, \frac{\pi}{4}\right)}+\underbrace{\left(\frac{1}{2}-(\sqrt{2}-1)\right)}_{\text {jump at } \frac{\pi}{8}} \delta_{\frac{\pi}{8}}+\underbrace{\left(1-\left(\left(\frac{\pi}{4}-\frac{\pi}{8}\right)^{2}+\frac{1}{2}\right)\right)}_{\text {jump at } \frac{\pi}{4}} \delta_{\frac{\pi}{4}}
$$

5. Explain why the expectation of $X, \mathbf{E}(X)$ is well defined. It is because the continuous part of support is bounded and the discrete part is finite.
6. Find the value of $\mathbf{E}(X)$.

$$
\mathbf{E}(X)=\int_{0}^{\frac{\pi}{4}} x d F(x)=\int_{0}^{\frac{\pi}{4}} x \sec ^{2}(x) d x+\int_{\frac{\pi}{8}}^{\frac{\pi}{4}} x \cdot 2\left(x-\frac{\pi}{8}\right) d x+\left(\frac{1}{2}-(\sqrt{2}-1)\right) \cdot \frac{\pi}{8}+\left(1-\left(\left(\frac{\pi}{4}-\frac{\pi}{8}\right)^{2}+\frac{1}{2}\right)\right) \cdot \frac{\pi}{4}
$$

7. Find the quantile function q of F.

$$
q(u)= \begin{cases}\arctan (u) & 0<u<\frac{1}{2}-(\sqrt{2}-1) \\ \frac{\pi}{8} & \frac{1}{2}-(\sqrt{2}-1) \leq u<\frac{1}{2} \\ \sqrt{u-\frac{1}{2}}+\frac{\pi}{8} & \frac{1}{2} \leq u<1-\left(\left(\frac{\pi}{4}-\frac{\pi}{8}\right)^{2}+\frac{1}{2}\right) \\ \frac{\pi}{4} & 1-\left(\left(\frac{\pi}{4}-\frac{\pi}{8}\right)^{2}+\frac{1}{2}\right) \leq u<1\end{cases}
$$

8. What is the distribution of $q(U)$ where U is uniformly distributed on $(0,1)$? The same distribution as X.

Exercise 2. Let X, Y be two independent random variables geometrically distributed according to some parameter $p \in(0,1)$. Let $Z=\min (X, Y)$.

1. What is $P(\{X=n\})$? By definition $P(\{X=n\})=p(1-p)^{n-1}$.
2. Deduce $P(\{X \geq n\})$.

Set $q=1-p$. Then

$$
P(X \geq n)=\sum_{k \geq n} P(X=k)=\sum_{k \geq n} q^{k-1} p=\frac{q^{n-1} p}{1-q}=q^{n-1}
$$

3. Show that $P(\{Z \geq n\})=q^{2 n-2}$. By independence of X and Y we have $P(\{Z \geq n\})=$ $P(\{X \geq n\}) P(\{Y \geq n\})$. Thus

$$
P(Z \geq n)=P(X \geq n) P(Y \geq n)=q^{2 n-2}
$$

4. Deduce the value of $P(\{Z=n\})$. It follows from $\{Z \geq n\}=\{Z=n\} \uplus\{Z \geq n+1\}$. Hence

$$
P(Z=n)=P(Z \geq n)-P(Z \geq n+1)=q^{2 n-2}-q^{2 n}=q^{2 n-2}\left(1-q^{2}\right)
$$

5. Identify the law of Z. From the expression of $P(\{Z=n\}), Z$ is geometrically distributed with parameter $1-q^{2}$.

Exercise 3. Let $V=(X, Y)$ be a random vector uniformly distributed on the Δ, the depicted planar triangle.

Figure 0.2: The vertices of the triangle Δ are $(0,0),(1,0),(0,1)$.

1. What is the joint p.d.f of $V, \rho(x, y) ? \rho(x, y)=\frac{1}{\operatorname{area}(\Delta)} \mathbf{1}_{\Delta}(x, y)=2 \mathbf{1}_{\Delta}(x, y)$.
2. Show that the marginal distribution of X is $\rho_{X}(x)=2(1-x) \mathbf{1}_{(0,1)}$. For $x \in(0,1)$ we have

$$
\rho_{X}(x)=\int \rho(x, y) d y=\int_{0}^{1-x} 2 d y=2(1-x)
$$

3. Find the expectation of X.

$$
\mathbf{E}(X)=\int_{0}^{1} x \rho_{X}(x) d x=\int_{0}^{1} x \cdot 2(1-x) d x=\frac{1}{3}
$$

4. Find the c.d.f of X.

$$
F_{X}(x)= \begin{cases}0 & x \leq 0 \\ \int_{0}^{x} \rho_{X}(t) d t=2 x-x^{2} & 0<x<1 \\ 1 & x \geq 1\end{cases}
$$

5. On the given figure, shadow the region $R:=\left[\frac{1}{2},+\infty\right) \times\left[\frac{1}{2},+\infty\right)$.
6. Deduce that $P(\{V \in R\})=0$. This is because R is outside the support of V, Δ.
7. Are the random components of V independent?

First method: If they are independent then

$$
P(\{V \in R\})=0=P\left(\left\{X \in\left[\frac{1}{2},+\infty\right)\right\}\right) P\left(\left\{Y \in\left[\frac{1}{2},+\infty\right)\right\}\right)
$$

but none of $P\left(\left\{X \in\left[\frac{1}{2},+\infty\right)\right\}\right)$ or $P\left(\left\{Y \in\left[\frac{1}{2},+\infty\right)\right\}\right)$ is zero.
Second method : X and Y have the same distribution (by the symmetry of the triangle). So if they are independent we must have

$$
\rho(x, y)=2 \mathbf{1}_{\Delta}(x, y)=2(1-x) 1_{\{x \in(0,1)\}} 2(1-y) 1_{\{y \in(0,1)\}}
$$

which is not correct.

