King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia **Department of Mathematics**

STAT 502: Statistical Inference

Term 212, Final Exam, Tuesday May 17, 2022, 07:00 PM

Name: _____ ID #: _____

Q1: (4 pts.) What is the sufficient statistic for θ if the sample arises from a beta distribution in which $\alpha = \beta = \theta > 0?$

For beta distribution $f(x; \alpha, \beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}; 0 < x < 1.$

STAT 502Statistical InferencePage 2 of 8Q2: (8 pts.) Suppose that $Y_1, Y_2, Y_3, \dots, Y_n$ constitute a random sample from a normal distribution with unknown mean μ and unknown variance σ^2 . We want to test $H_0: \mu = \mu_0$ versus $H_1: \mu > \mu_0$. Find the appropriate likelihood ratio test and recognize the distribution of statistic.

STAT 502

Q3: (6 pts.) Let $Y_1, Y_2, Y_3, ..., Y_m$ be a random sample from pdf or pmf $f(y; \tau)$ where *m* is a positive number. Let τ_0 and τ_1 be distinct fixed values of τ and *c* be a positive number. Let *A* be a subset of sample space such that

- (a) $\frac{L(y;\tau_0)}{L(y;\tau_1)} \le c$ for each point $\in A$ (b) $\frac{L(y;\tau_0)}{L(y;\tau_1)} \ge c$ for each point $\in A^c$
- (c) $\alpha = P_{H_0}[\mathbf{Y} \in A]$

Then mathematically show that *A* is a best critical region of size α for testing the simple hypothesis H_0 : $\tau = \tau_0$ against the simple alternative hypothesis H_1 : $\tau = \tau_1$. STAT 502

Q4: (4+4 = 8 pts.) Let the independent random variables X and Y have distributions that are $N(\mu_X, 3^2)$ and $N(\mu_Y, 4^2)$, where the means μ_X and μ_Y are unknown. Let $X_1, X_2, X_3, ..., X_{25}$ and $Y_1, Y_2, Y_3, ..., Y_{20}$ denote independent random samples from these distributions. For testing a simple null hypothesis H_0 : $\mu_X = \mu_Y$ against the simple alternative hypothesis H_1 : $\mu_X > \mu_Y$, the critical region of size α is $[\bar{X} - \bar{Y} > 1.77]$.

(a) Find the value of α .

(b) Find the power of this test if $\mu_X = 1.3 + \mu_Y$.

STAT 502