KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF MATHEMATICS

STAT 502: Statistical Inference

Term 222, Final Exam Tuesday May 23, 2023, 07:00 PM

Name: ID #:

Question No	Full Marks	Marks Obtained
1	08	
2	06	
3	08	
4	10	
5	13	
6	05	
Total	50	

Instructions:

- 1. Mobiles are not allowed in exam. If you have your **mobile** with you, **turn it off** and put it **on the table** so that it is visible to proctor.
- 2. Show all the derivation steps. There are points for the steps so if your miss them, you lose points. For multiple choice type questions, showing calculation steps is not required.
- 3. Derive every result that you use in your solution, unless mentioned otherwise.

STAT 502

Q1: (8 pts.) Let $X_1, X_2, ..., X_n$ denote a random sample from a distribution that has PDF $f(x; \theta)$ where $\theta \in \Omega$. Mathematically prove that the statistic $Y_1 = u_1(X_1, X_2, ..., X_n)$ is sufficient statistic for θ if and only if we can find two non-negative functions, k_1 and k_2 , such that

 $f(x_1;\theta)f(x_2;\theta)\dots f(x_n;\theta) = k_1[u_1(x_1,x_2,\dots,x_n);\theta] \times k_2(x_1,x_2,\dots,x_n),$ where $k_2(x_1,x_2,\dots,x_n)$ does not depend upon θ . Q1: cont...

STAT 502Statistical Inference4Q2: (6 pts.) Let X_1, X_2, \dots, X_n denote a random sample from a normal distribution with known mean μ_0 and unknown variance $\sigma^2 = \frac{1}{v}$. Further, assuming that the prior distribution for v is gamma with hyperparameters α and β , derive Bayesian estimator for $\sigma^2 = \frac{1}{v}$.

Q2: cont...

STAT 502Statistical Inference6Q3: (8 pts.) Let X_1, X_2, \dots, X_n and Y_1, Y_2, \dots, Y_m be independent samples from $N(\mu_X, \sigma_X^2)$ and $N(\mu_Y, \sigma_Y^2)$, respectively where $\sigma_X^2 = c\sigma_Y^2$. Derive a $100(1 - \alpha)\%$ confidence interval for the difference between means i.e. $(\mu_X - \mu_Y)$.

Q3: cont...

Q4: (10 pts.) Let $X_1, X_2, ..., X_n$ denote a random sample from $f(x; \theta)$. The likelihood of $X_1, X_2, ..., X_n$ is given by $L(x; \theta) = \prod_{i=1}^n f(x_i; \theta)$ for $(x_1, x_2, ..., x_n)$. Let θ' and θ'' be distinct fixed values of θ such that $\Omega = \{\theta: \theta = \theta', \theta''\}$. By defining *C* as a subset of the sample space *S*, state and prove Neyman Pearson's lemma.

Q4: cont...

Q5: (6+4+3 = 13 pts.) Let $X_1, X_2, ..., X_n$ be a random sample from $\Gamma(\alpha = 3, \beta)$ i.e. $f(x; \beta) = \frac{1}{\Gamma(3)\beta^3} x^2 e^{-\frac{x}{\beta}}; x > 0.$

(a) Derive a likelihood ratio test for testing $H_0: \beta = \beta_0$ against $H_1: \beta \neq \beta_0$.

(b) Define a pivotal quantity based on your statistic and derive its sampling distribution under null hypothesis.

(c) For testing $\beta = 2$ and n = 6, give an expression for the rejection region such that the size of test is 0.05.

Q5: cont...

Q5: cont...

STAT 502Statistical Inference13Q6: (5 pts.) Let X_1, X_2, \dots, X_n be a random sample from the probability density function given by $f(x;\theta) = \frac{\Gamma(2\theta)}{[\Gamma(\theta)]^2} x^{\theta-1} (1-x)^{\theta-1}, \ 0 \le x \le 1$ and zero elsewhere. Find the method-of-moments estimator for θ .

[Blank Page I]

[Blank Page II]