KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF MATHEMATICS

STAT 502: Statistical Inference

Term 222, Midterm Exam Saturday March 18, 2023, 06:00 PM

Name: _______________________________ ID #: ___________________

Instructions:

- 1. Mobiles are not allowed in exam. If you have your **mobile** with you, **turn it off** and put it **on the table** so that it is visible to proctor.
- 2. Show all the derivation steps. There are points for the steps so if your miss them, you lose points. For multiple choice type questions, showing calculation steps is not required.
- 3. Derive every result that you use in your solution, unless mentioned otherwise.

Code 1

Q1: (3x10 = 30 pts.) Multiple choice questions.

(001) Let $X_1, X_2, ..., X_n$ be a random sample from Normal distribution with mean μ and variance σ^2 . Which one of the following is correct expression for the mean square error of the estimator $\hat{\sigma}^2$ = $\sum_{i=1}^n (X_i - \overline{X})^2$ $\frac{x_i - x}{n}$ for estimating σ^2 ?

(A)
$$
\frac{\sigma^4}{n} \left(1 - \frac{1}{n}\right)
$$

\n(B)
$$
\frac{\sigma^4}{n} \left(1 + \frac{1}{n}\right)
$$

\n(C)
$$
\frac{(2n+1)\sigma^4}{n^2}
$$

$$
(D) \qquad \frac{(2n-1)\sigma^4}{n^2}
$$

$$
\text{(E)} \qquad \frac{2\sigma^4(n-1)}{n^2}
$$

(002) Which one of the following density functions does not belong to the exponential family?

(A)
$$
f(x) = \sqrt{\frac{2}{\pi}} \frac{1}{\theta^3} x^2 e^{-\frac{x^2}{2\theta^2}}, x > 0
$$

(B)
$$
f(x) = \frac{e^{-\frac{x}{\theta}}}{\theta(1 + e^{-\frac{x}{\theta}})^2} \quad -\infty < x < \infty
$$

(C)
$$
f(x) = \frac{x}{\theta^2} e^{-\frac{x^2}{2\theta^2}}, x \ge 0
$$

(D)
$$
f(x) = \theta x^{\theta - 1}, 0 < x < 1
$$

(E)
$$
f(x) = \frac{1}{x\sqrt{2\pi\theta}} e^{\frac{-1}{2\theta}(\ln x)^2}, x > 0
$$

(003) Let $X_1, X_2, ..., X_n$ be a random sample from Normal distribution with mean $\mu = 0$ and variance σ^2 . An estimator $\hat{\sigma}^2 = a \sum X^2$ is unbiased for σ^2 if

- (A) $a = \frac{1}{n}$ \boldsymbol{n} (B) $a = \frac{1}{n}$ $n-1$ (C) $a = n$ (D) $a = n - 1$
- (E) $a = 0$

(004) Let $X_1, X_2, ..., X_n$ be a random sample from the binomial distribution with $E(X) = \theta$, Var $(X) =$ $\theta(1 - \theta)$ and $P(X = x) = \theta^x(1 - \theta)^{1-x}$, $x = 0,1$. Then the sample mean

- (A) \bar{X} is a sufficient statistic for p.
- (B) \bar{X} is an efficient statistic for p .
- (C) \bar{X} is a consistent statistic for p .
- (D) (A) and (B) are correct but (C) is incorrect.
- (E) all (A), (B) and (C) are correct.

(005) If T_1 and T_2 are two most efficient estimators with the same sampling variance ω^2 and the correlation between them is ρ , the variance of $\frac{(T_1+T_2)}{2}$ $\frac{1}{2}$ is equal to

(A)
$$
\frac{(1-\rho)\omega^2}{2}
$$

\n(B)
$$
\rho\omega^2
$$

\n(C)
$$
\frac{(1+\rho)\omega^2}{2}
$$

\n(D)
$$
\frac{(1+\rho)\omega^2}{4}
$$

$$
\text{(E)} \qquad \frac{(1-\rho)\omega^2}{4}
$$

(006) Let $X_1, X_2, ..., X_9$ be a random sample from continuous Uniform distribution with probability density function $f(x) = \frac{1}{x}$ $\frac{1}{3}$, $\theta - 1 < x < \theta + 2$. What is the bias of sample mean \bar{X} ?

 (A) $\frac{1}{2}$ (B) ¹ $\frac{1}{3}$ (C) $\frac{9}{12}$ (D) 1 (E) $\frac{2}{5}$

(007) Let $X_1, X_2, ..., X_n$ be a random sample from a distribution with mean μ and variance σ^2 . Which one of the following is true for the sum of squares of deviations taken from sample mean?

(A)
$$
\sum_{i=1}^{n} (X_i - \bar{X})^2 = \sum_{i=1}^{n} (X_i - \mu)^2 + n(\bar{X} - \mu)^2
$$

(B)
$$
\sum_{i=1}^{n} (X_i - \bar{X})^2 = \sum_{i=1}^{n} (X_i - \mu)^2 + 2n(\bar{X} - \mu)^2
$$

(C)
$$
\sum_{i=1}^{n} (X_i - \bar{X})^2 = \sum_{i=1}^{n} (X_i - \mu)^2 - 2n(\bar{X} - \mu)^2
$$

(D)
$$
\sum_{i=1}^{n} (X_i - \bar{X})^2 = \sum_{i=1}^{n} (X_i - \mu)^2 - n(\bar{X} - \mu)^2
$$

(E)
$$
\sum_{i=1}^{n} (X_i - \bar{X})^2 = \sum_{i=1}^{n} (X_i + \mu)^2 + n(\bar{X} - \mu)^2
$$

(008) The estimator $\hat{\theta} = \sum X^4$ is sufficient for the unknown parameter θ if the probability density function from which the random sample $X_1, X_2, ..., X_n$ belongs is given as:

(A) $\theta 4^{\theta} x^{\theta-1} e^{-(4x)^{\theta}}, x \ge 0$

$$
\text{(B)} \qquad \frac{4^{\theta}}{\Gamma(\theta)} x^{\theta - 1} e^{-4x}, \, x \ge 0
$$

(C)
$$
4\theta^4 x^3 e^{-(\theta x)^4}, x \ge 0
$$

(D)
$$
\frac{1}{\Gamma(4)\theta^4} x^3 e^{-\frac{x}{\theta}}, x \ge 0
$$

(E)
$$
4\theta^{-4}x^{-5}e^{-(\theta x)^{-4}}, x \ge 0
$$

(009) Let $X_1, X_2, ..., X_n$ be a random sample from Geometric distribution with probability mass function $P(X = x) = \theta(1 - \theta)^{x-1}$, $x = 1, 2, 3, ...$ with $E(X) = \frac{1}{\theta}$ $\frac{1}{\theta}$ and Var(X) = $\frac{1-\theta}{\theta^2}$ $\frac{1}{\theta^2}$. The sample mean \bar{X} is consistent with

 (A) θ (B) $\frac{1}{1-\theta}$ (C) $\frac{1}{\theta^2}$ (D) θ^2 (E) $rac{1}{\theta}$

(010) Let $X_1, X_2, ..., X_n$ be a random sample from continuous Uniform distribution with probability

density function $f(x) = \frac{1}{a}$ $\frac{1}{\theta}$, $0 < x < \theta$. The method of moments estimator for θ is given as:

(A)
$$
\frac{\sum X}{n}
$$

\n(B)
$$
\frac{2\sum X}{n}
$$

\n(C)
$$
\frac{3\sum X^2}{n}
$$

\n(D)
$$
\sqrt{\frac{3\sum X^2}{n}}
$$

\n(E)
$$
\sqrt{\frac{2\sum X^2}{n}}
$$

 \boldsymbol{n}

Name: _______________________________ ID #: ___________________

Q2: (6+9 = 15 pts.) For a probability density function (PDF) denoted by $f(x; \theta)$, the total amount of information contained about θ in the PDF is denoted by I_θ and is given as $I_\theta=E\left[\frac{\partial}{\partial\theta}\ln f(x;\theta)\right]^2$ under a set of regularity conditions.

(a) Prove that $I_{\theta} = -E \int_{\partial \theta}^{2}$ $\frac{\partial}{\partial \theta^2} \ln f(x;\theta)$.

$$
Var(\hat{\theta}) \ge \frac{[K'(\theta)]^2}{-E\left[\frac{\partial^2}{\partial \theta^2} \ln L(x;\theta)\right]}
$$

where $L(x; \theta)$ is the likelihood function and $K(\theta) = E(\hat{\theta})$.

Q 2 (b) continues…

Q3 continues…

(a) Find the MLE for median of distribution.

(b) It is to be noted that the MLE derived in part (a) is a biased estimator for median of distribution. Is it possible to make it unbiased? If yes, do so.

Q5: (6 pts.) Let $X_1, X_2, ..., X_n$ be a random sample from a distribution with probability density function $f(x;\theta) = \theta^2 x e^{-\theta x}$, $x > 0$, zero elsewhere. Derive a minimum variance bound (MVB) estimator for $\frac{2}{\theta}$. Also, find its variance using the formula $\frac{Kr(\theta)}{A}$.

[Blank Page I]

[Blank Page II]