King Fahd University of Petroleum and Minerals Department of Mathematics STAT-511: APPLIED REGRESSION AND EXPERIMENTAL DESIGN (Term 242)

Instructor: Dr. Ridwan SanusiOffice: 5-203/2Phone: 7642E-mail: ridwan.sanusi@kfupm.edu.saOffice Hours: UTR 10:00 AM – 10:50 AM or by appointment via Teams or email

STAT 511: Applied Regression and Experimental Design

Simple linear regression. Estimating and testing of intercept and slope. Multiple linear regressions. Estimation parameters and testing of regression coefficients. Prediction and correlation analysis. Analysis of variance technique. Completely randomized and randomized block designs. Latin Square designs. Incomplete block design. Factorial design, 2^k factorial designs and blocking and confounding in 2^k factorial designs. Using statistical packages to analyze real data sets.

Prerequisites: Graduate Standing. Cannot be taken for credit with Math 560 or ISE 530. Cannot be taken by STAT major students.

Course Objectives: STAT511 is intended to be a foundation course in regression analysis and design and analysis of experiments. The emphasis is on understanding how to use regression analysis and experimental designs to solve real-world problems. Upon completion of this course, students should be able to:

- ✤ understand the least square method with reference to both regression analysis and experimental designs
- ✤ analyse the simple and multiple linear regression models in connection with ANOVA
- \diamond validate the assumptions of regression and design models through residual analysis
- \diamond develop the hypothesis test and confidence intervals for regression and design models
- demonstrate the model building techniques and analyze the model adequacy
- choose the best regression model using different variable selection techniques
- handle different experimental designs and their analysis
- comprehend the assumptions, methods, and implications associated with various experimental methods
- $\boldsymbol{\diamond}$ emphasise on the role of factorial experiments in DOE
- ✤ discuss the special type of 2^k factorial designs in DOE
- ✤ highlight the role of confounding in design of experiments
- * implement various regression techniques on some relevant datasets using R packages

Textbook: Montgomery, D.C. (2019). Design and Analysis of Experiments. 10th edition, Wiley, New York. **Software Packages:** R Language + RStudio

Reference Books:

- 1. Applied Regression Analysis and Generalized Linear Models by John Fox, 3rd edition, SAGE Publications 2015.
- 2. Introduction to Linear Regression Analysis by Montgomery, Peck and Vinning, 5th edition, Wiley (2012).

Assessment Activity	Weight
Classwork (quizzes, assignments, attendance, etc.)	15%
Midterm Exam(s)	30%
Project	15%
Final Exam (Comprehensive)	40%

R Language and RStudio: All R commands, procedures and packages will be explained in the class and the student are expected to practice them during and after the class.

Project Description

The project should be based on a real problem (with complete description) and a detailed analysis using the skills developed in the course. All results of the project should be made available numerically with the software/packages used in class. There should be some concluding remarks that refer to the real implications of your chosen problem. You may use online sources in your project with proper citation/reference.

Project Requirements:

•

- Each group should contain a maximum of 5 students.
 - Each group should submit the following:
 - a formal report (pdf)
 - o a power point presentation
- Deadline: The end of semester (before the last day of classes)

(3-0-3)

Weekly Schedule (Tentative)

Week	Topics	Chapter Ref Book 1	Chapter Text Book
	An introductory review		Dook
Week 1	A review of basic terminologies	Chapters 1&3	
WOOR I	A review of fundamental statistical procedures	chapters rees	Chapters 2
	Introductory session using R and RStudio (libraries and packages in RStudio)		
	Exporting Excel and text files to RStudio		
Week 2	Introduction to design of experiments		Chantan 1
Week 2	Defining experimental designBasic principles of experimental designs		Chapter 1
	 Basic principles of experimental designs Introducing basic designs 		
	ANOVA models for experimental designs		
Week 3	One way ANOVA model and its analysis		Chapter 3
,, con c	 Two way ANOVA model and its analysis 		enapter e
	Implementation of ANOVA models using RStudio		
	Block Designs		
Week 4	• Randomized complete block design and its analysis using two way ANOVA model		Chantan 4
week 4	Latin square design and its analysis using three way ANOVA model		Chapter 4
	Graeco Latin square design and its analysis using four way ANOVA model		
	Implementation of design models using RStudio		
	Analysis of covariance using ANCOVA models		Chapter
Week 5	Role of covariates in DOE		15
	ANCOVA models and their analysis		_
	Implementation of ANCOVA using RStudio		
West	Factorial Designs Multi factor experiments and their graphical analysis		Charten 5
Week 6	 Multi factor experiments and their graphical analysis Conducting factorial experiments using basic designs 		Chapter 5
	 Implementation of factorial designs using RStudio 		
	2 ^k factorial designs and confounding		
	с с		
Week 7	Level 2 factorial designs Sign table. Vista's algorithm, machine 2 method for linear contracts		Chapter 6&
	• Sign table, Yate's algorithm, modulu 2 method for linear contrasts		
	Confounded designs		
	Implementation of 2 ^k designs using RStudio		
Week 9	Introduction to regression	Chantan 2	Chapter 10
Week 8	 An introduction to regression modelling Exploring R and RStudio including libraries and packages, exporting Excel and text files, 	Chapter 2	
	performing basic statistical analysis in RStudio		
	Simple linear regression models (SLR)		
Week 9	• Simple linear regression model and its estimation using least-square method	Chapters 5&8	Chapters 10
	• Hypothesis testing and confidence intervals for regression parameters Analysis of variance	1	1
	technique and its role in regression analysis		
	Simple linear regression models (SLR) (cont.)		
Week 10	 Prediction of new observations for individual and mean values 	Chapter 6	Chapter 10
	Regression through the origin as a special case		
	Implementation of simple linear regression using RStudio		
	Multiple linear regression models (MLR)		
Week 11	• Multiple linear regression model and its estimation using least-square method	Chapter 5	Chapter 10
	 Individual hypothesis testing and confidence intervals Prediction of individual and mean values 		
	Prediction of individual and mean values Multiple linear regression models (MLR) (cont.)		
Week 12	Multiple linear regression models (MLK) (cont.) Measures of variation with multiple independent variables	Chapters 6&8	Chapters 10
Week 12	 Measures of variation with multiple independent variables Overall F-test for significance 	Chapters 000	Chapters IC
	 Partial F-test: Testing for the significance of portions of the model 		
	Multiple linear regression models (MLR) (cont.)		
Week 13	Pitfalls and issues in multiple linear regression (hidden extrapolation)	Chapters 6&8	Chapters 10
	Standardized regression coefficient	1	1
	Implementation of multiple linear regression using RStudio		
	Variable selection and model building		
Week 14	Approaches to model building	Chapter22	Chapter 10
	Strategy for variable selection		
	Implementation of feature selection using RStudio		
	An introduction to some selective topics in experimental designs and regression analysis (depending		
Week 15	on time availability)		Chapter 14
	 Split plot designs Split-split plot designs 		
	 Spin-spin plot designs Implementation of split plot designs using RStudio 		
Week 16	Implementation of spirt plot designs using Abitatio		
	Review		

Important Notes:

Blackboard: All contacts or announcements between the instructor and the students are supposed to be through Blackboard, so the student must check Blackboard at least once a day.

Academic Integrity: All KFUPM policies regarding ethics and academic honesty apply to this course.

Important Rules

- 1- Student is not allowed to enter the exam hall without either KFUPM ID cards or Saudi ID/ Iqama ID cards.
- 2- Students are not allowed to carry mobile phones and smart watches to the exam halls.
- 3- Students need to strictly adhere to the attendance policy of the university.
- 4- DN-Grade will be assigned to the eligible students after their instructors have warned them twice.

Cheating in Exams

Cheating or any attempt of cheating by use of illegal activities, techniques and forms of fraud will result in a grade of **DN** in the course along with reporting the incident to the higher university administration for further action. Cheating in exams includes (but is not restricted to):

- \succ looking at the papers of other students
- ➤ talking to other students
- ➤ using mobiles or any other electronic devices.

<u>Missing an Exam</u>

In case a student misses an exam (Exam I, Exam II, or the Final Exam) for a legitimate reason (such as medical emergencies), he must bring an official excuse from Students Affairs. Otherwise, he will get zero in the missed exam.

<u>Attendance</u>

- > Students are expected to attend all lecture classes.
- > If a student misses a class, he is responsible for any announcement made in that class.
- Attendance on time is very important. Mostly, attendance will be checked within the first five minutes of the class. Entering the class after that, is considered as one late, and every two times late equals to one absence.
- A DN grade will be awarded to any student who accumulates more than 20% unexcused absences (6 lectures) or 33.3% excused and unexcused absences (10 lectures).

The usage of mobile phones and apple watches

- Students are not allowed to use mobiles for any purpose during class time unless given permission.
- Violations of these rules will result in a penalty decided by the instructor.
- Academic Integrity: All KFUPM policies regarding ethics apply to this course. See the Undergraduate Bulletin.