STAT 513: Statistical Modeling

Term 231, Major Exam I
Monday October 09, 2023, 05:45 PM

Name: \qquad ID \#: \qquad

Question No	Full Marks	Marks Obtained
1	$\mathbf{3 8}$	
2	$\mathbf{1 8}$	
3	$\mathbf{2 4}$	
Total	$\mathbf{8 0}$	

Instructions:

1. Mobiles are not allowed in the exam. If you have your mobile with you, turn it off and put it on the table/floor so that it is visible to the proctor.
2. Show all the calculation steps. There are points for the steps so if you miss them, you lose points. For multiple choice type questions, showing calculation steps is not required.
3. Report at least 4 decimal points of your numerical answers.

Q1: ($2 \times 18=38$ pts.) Multiple choice or fill in the blank questions. Any MCQ with more than one option circled will be considered wrong.
(i) Which one of the following diagrams would be useful in depicting the median value in the data?
(A) Pie Chart
(B) Bar Chart
(C) Scatter Plot
(D) Box Plot
(E) Stem and Leaf Diagram
(ii) Which one of the following diagrams would be useful in visually examining the relationship between two quantitative variables?
(A) Scatter Plot
(B) Box Plot
(C) Pie Chart
(D) Bar Chart
(E) Stem and Leaf Diagram
(iii) Consider the simple linear regression model fit to the solar energy data. The plot of residuals vs fitted response is given as follows:

Considering the given plot, which of the following statements is true?
(A) The assumption of normality is violated.
(B) The assumption of independence is violated.
(C) The assumption of constant variance is violated.
(D) The assumptions of independence and normality
 are violated.
(E) The assumptions of normality and linearity are violated.
(iv) Wilcoxon signed rank test is used for testing hypothesis related to
(A) Population variance
(B) Population median
(C) Population standard deviation
(D) Population percentiles
(E) None of the others
(v) Which one of the following statements is true?
(A) Z test is used for testing hypothesis about the population variance.
(B) T test is used for testing hypothesis about the population variance.
(C) T test is more flexible than the Z test.
(D) T test cannot be applied to a sample of size more than 30
(E) Z test cannot be applied to a sample of size more than 30
(vi) Which one of the following is not a linear regression model?
(A) $y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3} e^{X_{3 i}}+\epsilon_{i}$
(B) $y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}^{3}+\beta_{3} X_{3 i}^{2}+\epsilon_{i}$
(C) $y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3} \ln X_{3 i}+\epsilon_{i}$
(D) $y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+e^{\beta_{3} X_{3 i}}+\epsilon_{i}$
(E) $y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{12} X_{1 i} X_{2 i}+\beta_{3} X_{3 i}+\epsilon_{i}$
(vii) Which one of the following is true about the prediction interval computed from a multiple linear regression model?
(A) The width of prediction interval increases with an increase in significance level α.
(B) It is wider than the confidence interval for mean response.
(C) The predicted value can fall outside the prediction interval.
(D) A prediction interval cannot be computed when there is only one predictor in the model.
(E) The actual value of response always falls inside the prediction interval.
(viii) Which one of the following is true for the estimated regression equation $\hat{y}=2.3-1.67 X_{1}+$ $0.33 X_{2}+1.92 X_{3}$?
(A) Due to a unit increase in X_{1}, y increases on average by 1.67 units, keeping $X_{2} \& X_{3}$ fixed.
(B) Due to a unit increase in X_{2}, y decreases on average by 0.33 units, keeping $X_{1} \& X_{3}$ fixed.
(C) Due to a unit increase in X_{3}, y decreases on average by 1.92 units, keeping $X_{1} \& X_{2}$ fixed.
(D) Due to a unit increase in X_{1}, y decreases on average by 1.67 units, keeping $X_{2} \& X_{3}$ fixed.
(E) None of the others
(ix) Suppose we use a least squares linear regression model on a set of data points (x, y). We find the coefficient of correlation is -0.7 , the regression line is given by $y=-51 x+32$ and the QQ plot of residuals is given as:

Which one of the following is true for this model?
(A) The model is good because the correlation is negative.
(B) The model is good because the slope coefficient is negative.
(C) The model is not good because the slope coefficient is negative.
(D) The model is good because QQ plot shows that the residuals are normally distributed.

(E) The model is not good because QQ plot shows that the residuals are not normally distributed.
(x) If the correlation coefficient between the two variables X and y is close to +1 , what does that mean?
(A) $\quad X$ is causing the change in y.
(B) $\quad y$ is causing the change in X.
(C) When X increases y also increases, and vice versa.
(D) When X increases y decreases, and vice versa.
(E) $\quad X$ and y both are causing the change in each other.
(xi) In regression analysis, the difference between actual value of response variable and fitted value is called
(A) independent variable
(B) variance inflation factor
(C) analysis of variance
(D) residual
(E) outlier
(xii) Which one of the following is not true for regression analysis?
(A) $\quad \mathrm{SSE} \leq 0$
(B) $\quad S S R \geq 0$
(C) $\quad \mathrm{SSR} \leq \mathrm{SST}$
(D) $\quad \mathrm{SSE} \leq \mathrm{SST}$
(E) $\quad \mathrm{SST} \geq 0$
(xiii) In a linear regression model, we performed a Breusch-Pagan test and found the test statistic $B P=$ 8.46 with the p-value $=0.21$. What do we conclude from this output assuming $\alpha=0.05$?
(A) None of the predictors is significant.
(B) The equal variance assumption has not failed.
(C) The normality assumption has failed.
(D) The linearity assumption has not failed.
(E) None of the others.
(xiv) In simple linear regression, least square method calculates the best-fitting line for the observed data by minimizing the sum of the
(A) squares of the observed response
(B) squares of the fitted values
(C) difference between observed and predicted response
(D) absolute of the fitted values
(E) None of the others
(xv) For testing the significance of a predictor X_{1} in simple linear regression, we can define Z-test based on $Z=\frac{\widehat{\beta}_{1}}{\sqrt{\sigma^{2} / s_{X X}}}$. Why this test is impractical for regression analysis?
(A) $\quad S_{X X}$ is never known.
(B) $\quad \sigma^{2}$ is never known.
(C) $\quad \hat{\beta}_{1}$ is never known.
(D) Normal distribution PDF cannot be integrated.
(E) CDF of Normal distribution is not available in closed form.
(xvi) In a linear regression model, we performed Lilliefors test and found the test statistic $D=0.19$ with the p -value $=0.035$. What do we conclude from this output assuming $\alpha=0.05$?
(A) All predictors are insignificant.
(B) The linearity assumption has failed.
(C) The normality assumption has failed.
(D) The equal variance assumption has failed.
(E) None of the others.
(xvii) What is the difference between mathematical and statistical relationships?
(A) The error term.
(B) Nothing, they are both the same.
(C) Statistical relationships are exact while mathematical are approximate.
(D) The intercept.
(E) The slope.
(xviii) In multiple linear regression analysis, a partial F test is used for
(A) Testing the normality assumption.
(B) Testing the independence assumption.
(C) Testing the assumption of equal variance.
(D) Testing the significance of some predictors.
(E) None of the others.
(xix) Fit a multiple linear regression model $y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+\beta_{4} X_{4 i}+\epsilon_{i}$ and test the following constraints: $H_{0}: \frac{\beta_{3}}{10}-2 \beta_{2}=-0.5$ against $H_{1}: \frac{\beta_{3}}{10}-2 \beta_{2} \neq-0.5$.
Write down the \boldsymbol{T} matrix and \boldsymbol{c} vector for testing the above hypotheses.
$T=[$
$], \quad \boldsymbol{c}=[\square$

Q2: $(3+5+5+3+2=18$ pts. $)$ Data on the thrust of a jet turbine engine and four predictors are available with $n=32$. Several models are applied to the given dataset and the resulting R outputs are given below:
model1: $y=B_{0}+B_{2} X_{2}+\varepsilon$
Ca11:
1m(formula $=y \sim x 2$, data $=$ jet_turbine_engine)

| Residuals: | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Min | 1Q | Median | $3 Q$ | Max |
| -172.91 | -95.74 | -35.49 | 51.55 | 489.55 |

Coefficients:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	-27070.92141	2051.38282	-13.20	5.01e-14	***
x2	1.04584	0.06937	15.08	$1.53 \mathrm{e}-15$	***

Residual standard error: 175.6 on 30 degrees of freedom
Multiple R-squared: 0.8834, Adjusted R-squared: 0.8795
F-statistic: 227.3 on 1 and 30 DF, p-value: 1.533e-15
> nortest::ad.test(x=rstandard(mode11))
Anderson-Darling test
data: rstandard(mode11)
$\mathrm{A}=2.1329, \mathrm{p}-\mathrm{value}=0.00001502$
> 1mtest::bptest(mode11)
studentized Breusch-Pagan test

```
data: model1
BP = 0.0046336, df = 1, p-value = 0.9457
> car::durbinWatsonTest(mode11)
    lag Autocorrelation D-W Statistic p-value
        1 -0.1901218 2.346469 0.324
    Alternative hypothesis: rho != 0
```

model2: $y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{4} X_{4}+\epsilon$
Cal1:
1m(formula $=y \sim x 1+x 2+x 3+x 4$, data $\left.=j e t _t u r b i n e _e n g i n e\right)$

Residuals:				
Min	1Q	Median	$3 Q$	Max
-63.595	-18.056	4.516	17.017	44.965

Coefficients:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	-3900.2496	2651.1738	-1.471	0.1528	
x1	1.4549	0.1634	8.906	0.0000000016	***
x2	0.1882	0.1196	1.574	0.1272	
x 3	0.7653	0.4219	1.814	0.0808	
x4	-17.0861	2.7906	-6.123	0.0000015324	***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 '.’ 0.1 ‘ ' 1
Residual standard error: 29.48 on 27 degrees of freedom
Multiple R-squared: 0.997, Adjusted R-squared: 0.9966
F-statistic: 2276 on 4 and 27 DF, p-value: < 2.2e-16
> anova(mode11,mode12)
Analysis of Variance Table
Mode1 1: y ~ x2
Mode1 2: y ~ x1 + x2 + x3 + x4
Res.Df RSS Df Sum of Sq F $\operatorname{Pr}(>F)$
$1 \quad 30925016$
$22723460301556345.86<2.2 e-16 \% * *$
Signif. codes: 0 '***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 '.’ 0.1 ' ' 1

Report at least 4 decimal points of your numerical answers.

(i) It can be seen from the above outputs that predictor $\mathbf{x} 2$ was significant in model1, but it became insignificant in model2. What is/are the possible reason(s)?
(ii) For model1, if we are interested in testing the assumption of homoscedasticity (equal variance), then fill the following blanks:
H_{o} : \qquad
H_{1} : \qquad
p -value of the test $=$ \qquad
Assuming $\alpha=0.05$, we reject H_{0} if \qquad
Conclusion \qquad
\qquad
(iii) With reference to model2, if we are interested in testing the significance of $x 3$, then fill the following blanks:
H_{o} : \qquad
H_{1} : \qquad
Test statistic $=$ \qquad
p -value of the test = \qquad
Conclusion \qquad
\qquad
(iv) In the presence of $\mathbf{x} \mathbf{2}$, are $\mathbf{x 1}, \mathbf{x} \mathbf{3}$ and $\mathbf{x 4}$ contributing significantly? i.e.
$\mathrm{H}_{0}: \beta_{1}=\beta_{3}=\beta_{4}=0$ against H_{1} : At least one $\beta_{j} \neq 0$ for $j=1,3$ or 4 .
Test statistic $=$ \qquad
p -value of the test = \qquad
Conclusion \qquad
\qquad
(v) What percent of the variation in thrust of a jet turbine engine is explained by the four predictors?
\qquad

Name: \qquad ID \#: \qquad Data Code: \qquad

Report at least 4 decimal points of your numerical answers.
Q3: $(2+3+3+5+2+3+3+3=24$ pts.) Data on the thrust of a jet turbine engine and four predictors are available with $n=32$. Fit a multiple linear regression model $y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+$ $\beta_{4} X_{4}+\epsilon$.
(i) The fitted regression equation is
$\hat{y}=$ \qquad
(ii) Predict the thrust of a jet turbine engine when $x_{1}=2080, x_{2}=30200, x_{3}=1710$ and $x_{4}=$ 105.

The predicted value is equal to \qquad .
(iii) A 99\% prediction interval for the thrust of a jet turbine engine when $x_{1}=2080, x_{2}=30200$, $x_{3}=1710$ and $x_{4}=105$ is given as:
[\qquad , \qquad]
(iv) Is the prediction done in part (ii) interpolation or extrapolation? Provide all the details of your solution before writing the final answer.
(v) Construct a 99% confidence interval estimate for β_{3} i.e. the average change in y due to a unit change in X_{3}, holding the other predictors.
\qquad , \qquad]
(vi) Test the following constraints: $H_{0}: \frac{\beta_{3}}{10}-2 \beta_{2}=-0.5$ against $H_{1}: \frac{\beta_{3}}{10}-2 \beta_{2} \neq-0.5$. The \boldsymbol{T} matrix and \boldsymbol{c} vector for testing the above hypotheses is given as:
$\boldsymbol{T}=\left[\begin{array}{lllll}0 & 0 & -2 & 0.1 & 0\end{array}\right] \quad, \quad \boldsymbol{c}=[-0.5]$
For testing the above hypothesis, the p -value is given by \qquad .
(vii) For testing the normality assumption, perform the Lilliefors test on studentized residuals (ri) and report your findings.
p-value $=$ \qquad
Conclusion:
(viii) For testing the equal variance assumption, perform the Breusch-Pagan test and report your findings.
p-value $=$ \qquad
Conclusion:

