King Fahd University of Petroleum and Minerals Department of Mathematics

STAT 513 Syllabus, Term 251 (2025-26)

Instructor: Dr. Nasir Abbas (nasirabbas@kfupm.edu.sa)

Course Title: Statistical Modelling

Course Credit Hours: 3-0-3

Textbook: A. Agresti. Foundations of Linear and Generalized Linear Models, Wiley (2015).

Reference Books:

- Linear Regression Models Applications in R by John P. Hoffman, Chapman & Hall/CRC (2021).
- Introduction to Linear Regression Analysis by Montgomery, Peck and Vinning, 6th edition, Wiley (2021).
- An Introduction to Statistical Learning with Applications in R by G. James, D. Witten, T. Hastie and R. Tibshirani, 2nd Edition, Springerlink 2021.

Software Package: R language and R studio.

Course Objective:

- Introduce statistical tools for modeling;
- Develop models that learn from the observed data;
- Implement statistical models based on the statistical analysis.

Course Description: Statistical tools for learning from the data by doing statistical analysis on the data with an emphasis on the implementation using various software, toolboxes, and libraries like R, Scikit-Learn, and Stats models. Topics include simple and Multiple Linear Regression, Polynomial Regression, Splines, Generalized Additive Models; Hierarchical and Mixed Effects Models; Bayesian Modeling; Logistic Regression, Generalized Linear Models, Discriminant Analysis; Model Selection.

Prerequisite: MATH 102

Course Learning Outcomes: Upon successful completion of the course, a student should be able to

- Develop statistical models to describe the observed data using computational tools;
- Describe different statistical tools to analyze data;
- Measure the effectiveness of models;
- Present effectively through oral presentation and written reports outcome of the models;
- Interpret the statistical models.

Grading Policy:

Activity	Weight
Classwork (quizzes, assignments, attendance, bonuses, etc.)	15%
Project	20%
Midterm Exam	30%
Final Exam (Comprehensive)	35%

Coverage Plan

No	List of Topics	Contact hours
1	Statistical Learning What is Statistical Learning Descriptive Analysis Probability and Sampling Distributions Inferential Analysis Introduction to R language	3
2	Simple Linear Regression	3
3	 Multiple Linear Regression Estimating Regression Coefficients Some Important Questions Other Considerations in the Regression Model Qualitative Predictors Extensions of the Linear Model Model fitting using R 	6
4	Polynomial Regression Introduction to Polynomial Regression Step Functions Basis Functions Polynomial Regression Fitting using R 	3
5	Linear and Non-Linear Spline Fitting Regression Splines Piecewise Polynomials Constraints and Splines Smoothing Splines Spline Fitting using R	3
6	LOGIT and PROBIT models Models with a Binary Response Variable Logistic Regression Models Probit Regression Models Estimating the Parameters in a Logistic Regression Model Interpretation of the Parameters in a Logistic Regression Model Fitting LOGIT and PROBIT Models using R	6
7	 Poisson Regression Introduction to Poisson Regression Application of Poisson Regression using R 	3
8	Generalized Linear Models Link Functions and Linear Predictors Parameter Estimation and Inference in the GLM Prediction and Estimation with the GLM Residual Analysis in the GLM Using R to Perform GLM Analysis	6
9	Model Building Techniques Best Subset Selection Stepwise Selection Choosing the Optimal Model Model Selection Using R	6

	Bayesian Modeling	
10	Testing and Comparing Models	3
	Making the Most Accurate Predictions	
	Interpreting Results Quickly & Effectively	
11	Non-Linear Regression	3
	Linear and Nonlinear Regression Models	
	Origins of Nonlinear Models	
	Nonlinear Least Squares	
	Transformation to a Linear Model	
	Parameter Estimation in a Nonlinear System	
	Statistical Inference in Nonlinear Regression	
	 Examples of Nonlinear Regression Models Using R 	
	Total	45

Academic Integrity: All KFUPM policies regarding ethics and academic honesty apply to this course.

Excuse: In case a student misses an exam (Midterm or Final) for a legitimate reason (such as medical emergencies), he/she must bring an official excuse from Students Affairs. Otherwise, he/she will get a score of zero in the missed exam.

Cheating and Plagiarism: Cheating or any attempt at cheating by use of illegal activities, techniques and forms of fraud will result in a grade of DN in the course along with reporting the incident to the higher university administration for further action. Cheating in exams includes (but is not restricted to):

- Looking at the papers of other students.
- > Talking to other students.
- Using mobiles, smart watches or any other electronic devices.

Mobiles: The use of mobiles is *strictly banned* during class. Students are required to keep their phones off/silent and placed inside their pockets during the class timings.

Project: Project Guidelines will be uploaded to Blackboard, and guidelines for the report will also be posted there. The instructor will form project groups.

Letter Grades: The letter grades will follow a grading curve, which depends on the average of all students enrolled in the course.

Attendance Notes:

Students are expected to attend all lectures.

- If a student misses a class, he/she is responsible for any announcement made in that class.
- After being warned twice by the instructor, a DN grade will be awarded to any student who accumulates
 - o 6 unexcused absences (20%), or,
 - 10 excused and unexcused absences (33%)

Use of AI Tools (like ChatGPT):

- > Students are encouraged to use AI responsibly as a learning aid for understanding lecture content, practicing statistical concepts, and preparing for exams.
- However, the use of AI during quizzes and exams is *strictly prohibited* and will be treated as an academic integrity violation.