King Fahd University of Petroleum and Minerals Department of Mathematics STAT 515

MIDTERM EXAM - Term 231
Sunday, October 29, 2023
Location: Building 59, Room: 2011
Allowed Time: 90 minutes Instructor: Dr. Brahim MEZERDI

Name:
ID \#:
Section \#:

Instructions:

1. Write clearly and legibly. You may lose points for messy work.
2. Show all your work. No points for answers without justifications !

Question \#	Grade	Total Points
1		5
2		5
3		5
4		5
5		5
6		5
Total		30

Exercise 1 (5 points)

Let X_{1} and X_{2} two independent random variables such that X_{1} has a binomial distribution $\mathcal{B}\left(n_{1}, p\right)$ and X_{2} has a binomial distribution $\mathcal{B}\left(n_{2}, p\right)$.

1) Find the distribution of the random variable $X_{1}+X_{2}$.
2) Find the conditional ditribution of X_{1} given that $X_{1}+X_{2}=m$. Solution

Exercice 2 (5 points)

Let X be a normal random variable with parameters μ and σ with density

$$
f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right),-\infty<x<+\infty
$$

1) Let $Y=\exp (X)$. Show that the random variable Y is lognormal with density

$$
f_{Y}(x)=\frac{1}{x \sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{\ln (x)-\mu}{\sigma}\right)^{2}\right), \text { for } x>0
$$

2) Compute $E(Y)$ and $\operatorname{Var}(Y)$. Justify your answer.

Solution

Exercise 3 (5 points)

Let X a random variable with standard gaussian density

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} x^{2}\right)
$$

i) Compute $E(X)$ and $\operatorname{Var}(X)$?
ii) Find the density, the expectation and the vaiance of $Y=2 X+3$.

Solution

Exercise 4 (5 points)

We throw a balanced coin. The results of the throws are independent random variables $Y_{0}, Y_{1}, Y_{2}, \ldots . ., Y_{n}$, with values 0 or 1 . For $n \geq 1$, we denote

$$
X_{n}=Y_{n}+Y_{n-1}
$$

1) Compute $P\left(X_{3}=0 / X_{1}=0, X_{2}=1\right)$ and $P\left(X_{3}=0 / X_{2}=1\right)$?
2) Is $\left(X_{n}\right)$ a Markov chain?

Solution

Exercise 5 (5 points)

Consider $\left(Y_{n}\right)$ a sequences of random variables with values in \mathbb{Z}, independent and identiquely distributed. Assume that Y_{0} is independent of $\left(Y_{n}\right)$. Define the sequence $\left(X_{n}\right)$ by:

$$
\left\{\begin{array}{c}
X_{0}=Y_{0} \\
X_{n+1}=X_{n}+\sum_{i=0}^{n+1} Y_{i}
\end{array}\right.
$$

1) Show that $\left(X_{n}\right)$ is a Markov chain.
2) Assume that for each i the random variable Y_{i} takes values 1 and -1 with probabilities $P\left(Y_{i}=1\right)=p$ and $P\left(Y_{i}=-1\right)=1-p$ Determine the transition matrix of $\left(X_{n}\right)$.

Exercise 6 (5 points)

Let $\left(X_{n}\right)$ be a Markov chain with finite state space $\{1,2\}$ such that $P\left(X_{n+1}=1 / X_{n}=\right.$ $1)=0.7$ and $P\left(X_{n+1}=1 / X_{n}=2\right)=0.4$.

1) Determine the transition matrix and draw the transition graph.
2) Find the stationary distribution of the class $\{1,2\}$.

Solution

