STAT565-First Major, Term 222, Date: 02-March-2023 Name: ID:

- 1 (i) Define the following terms:
 - Population
 - Sample
 - Parameter
 - Statistic
 - Sampling units
 - Sampling frame
 - Non-sampling error
 - Probability sampling
 - Non-probability Sampling
 - Sampling error
 - (ii) Show that the sample mean $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ is an unbiased estimator of the population mean, \bar{Y} and its variance is given by $Var(\bar{y}) = \frac{N-1}{N} \frac{S_y^2}{n}$ in with replacement sampling.
 - (iii) The table below shows the weights at birth of four babies, x delivered in one day in Damman hospital. Suppose a simple random sample of size n = 2 is to be selected from the above table of

U_i	1	2	3	4
X_i	3.9kg	3.6kg	3.4kg	3.7kg

population N = 4 units without replacement in order to estimate the population mean weight of the 4 babies. Obtain all possible samples of size 2 selected without replacement together with all possible sample estimates so as to complete the table below.

Sample	Sample units	Probability	Sample mean \bar{x}	Square of error $(\bar{x} - \bar{X})^2$	$\frac{1-f}{n(n-1)} \sum_{i=1}^{n} (x_i - \bar{x})^2$
1					
2					
:					

Mean

2 Given the ratio of two variables, $R = \frac{\sum_{i=1}^{N} Y_i}{\sum_{i=1}^{N} X_i} = \frac{N\bar{Y}}{N\bar{X}}$ with their corresponding sample estimates

$$\widehat{R} = \frac{\sum_{i=1}^{n} y_i}{\sum_{i=1}^{n} x_i} = \frac{\overline{y}}{\overline{x}}$$

- (i) Find $E(\widehat{R})$ and $Var(\widehat{R})$
- (ii) Show that bias of \hat{R} is defined as $E(\hat{R}) R = \frac{1-f}{n} R \left[\frac{S_x^2}{\bar{X}^2} \frac{S_{xy}}{\bar{X}\bar{Y}} \right]$

3 In a population of size N = 5, the values of the main character Y, and the the auxiliary character X, are given as follows:

Y	3	8	4	7	13
X	1	5	3	4	10

Using the above data

- (i) Calculate the population mean \bar{Y} of y
- (ii) Calculate the population ratio $R = \frac{\bar{Y}}{\bar{X}}$
- (iii) Obtain the sample means \bar{y} and \bar{x} for all possible simple random samples of size 3 drawn without replacement.
- (iv) Show that \bar{y} is unbiased for \bar{Y} while \hat{R} is biased for R
- (v) Verify that $Var(\bar{y})$, the variances of \bar{y} is given by

$$Var(\bar{y}) = \frac{N-n}{N} \frac{S_Y^2}{n}$$

4 Given a cost function

$$C = C_0 + \sum_{h=1}^{L} C_h n_h$$
 and $V(\bar{y}_{st}) = \sum \frac{W_h^2 S_h^2 (1 - f_h)}{n_h}$

(i) Show that for optimum allocation $n_h = \frac{nW_h S_h/\sqrt{C_h}}{\sum (W_h S_h/\sqrt{C_h})}$

- (ii) Verify that $V_{prop}(\bar{y}_{st})$ agrees with the formula, $V(\bar{y}_{st}) = \frac{1-f}{n} \sum W_h S_h^2$
- (iii) If $V(\hat{Y}_{st}) = \sum N_h (N_h n_h) \frac{S_h^2}{n_h}$, show that by putting $n_h = \frac{nN_h}{N}$ in $V(\hat{Y}_{st})$ gives $V(\hat{Y}_{st}) = \frac{1-f}{f} \sum N_h S_h^2$